Meta SAM3开源:让图像分割,听懂你的话

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Meta发布并开源SAM 3,首个支持文本、点、框等提示进行图像与视频分割的统一基础模型,突破传统限制,实现开放词汇概念的精准识别与跟踪,涵盖超400万独特概念,推动视觉分割新发展。

Meta正式发布并开源新一代Segment Anything Model 3(SAM 3),一个用于图像和视频中可提示分割的统一基础模型,能够通过文本提示或点、框、掩码等视觉提示来检测、分割和跟踪目标。

图像分割方向一直以来的难题是用户往往希望分割那些不在预定义列表中的概念,但传统模型通常只能分割特定目标。比如,现有模型可以轻松分割“人”这类常见对象,却难以处理如“红色条纹伞”这样更精细、更具体的视觉概念。

SAM 3 通过引入“可提示概念分割”能力,有效克服了这一局限:它能够根据文本提示或示例图像,自动识别并分割出所有符合该概念的实例。

SAM3跟踪一只毛发蓬松的金色寻回犬

SAM3跟踪穿白色球衣的球员

SAM 3 首次实现了对由简短文本短语或示例图像所定义的开放词汇概念的所有实例进行完整分割,能够处理数量远超以往的开放词汇提示。在Meta新构建的 SA-Co 基准测试中,该模型在包含 27 万个独特概念的数据集上达到了人类性能的 75%–80%,SAM3能支持的独特概念数量是现有基准的 50 倍以上。

开源地址:

ModelScope:

http://modelscope.cn/organization/facebook

GitHub:

https://github.com/facebookresearch/sam3?tab=readme-ov-file


01模型架构:可提示概念分割

SAM 3 的模型架构延续并融合了 Meta 在人工智能领域的多项前沿成果。其中文本编码器与图像编码器均源自“Meta Perception Encoder”——这是Meta于今年四月开源的一个模型,它能构建更强大的计算机视觉系统,辅助用户完成图像识别、目标检测等日常任务。相较于此前使用的编码器,采用 Meta Perception Encoder 使模型性能实现了显著跃升。检测器组件基于 DETR 模型,这是首个将 Transformer 应用于目标检测的开创性工作。SAM 2 中所采用的记忆库与记忆编码器,则构成了当前跟踪器(Tracker)模块的基础。此外,还整合了多个开源组件,包括公开数据集、基准测试集和模型改进方法,以推动本项工作的持续进步。


02基于人工智能与人工标注的新型数据引擎

为获取涵盖广泛类别与视觉领域的高质量标注图像,Meta构建了一个可扩展的数据引擎,将 SAM 3、人工标注员与 AI 模型整合为一个闭环系统,显著提升了标注效率:在处理“否定提示”(即图像/视频中不存在的概念)时,速度比纯人工快约 5 倍;即使在具有挑战性的细粒度领域,对于“肯定提示”,标注速度也比人工快 36%,通过这一人机协同系统,Meta构建一个包含超过400 万个独特概念的大规模、多样化训练数据集。

该引擎的流程如下:一个由 SAM 3 和基于 Llama 的图像字幕生成系统组成的 AI 管道,自动从海量图像和视频中挖掘内容,生成描述性字幕,解析为文本标签,并生成初始分割掩码(如上图中的“候选对象”)。

随后,人工标注员与 AI 标注员共同验证并修正这些候选结果,形成一个持续反馈的闭环机制——在快速扩展数据集覆盖范围的同时,不断优化数据质量。AI 标注员基于经过专门训练的 Llama 3.2v 模型,其在标注任务(如判断掩码质量是否达标、是否完整覆盖了图像中某一概念的所有实例)上的准确率,已达到甚至超越人类标注员水平。

03基准测试数据集

为评估模型在大词汇量下的检测与分割能力,我们构建了全新的基准测试——Segment Anything with Concepts(SA-Co),专门用于图像与视频中的可提示概念分割。与以往基准相比,SA-Co 要求模型识别的语义概念数量大幅增加。SA-Co 数据集也开源,支持研究复现,并推动开放视觉分割领域的持续创新。


04模型推理

环境安装:

# 1、创建新的conda环境
conda create -n sam3 python=3.12
conda deactivate
conda activate sam3
# 2、安装pytorch-cuda
pip install torch==2.7.0 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu126
# 3、克隆仓库并安装
git clone https://github.com/facebookresearch/sam3.git
cd sam3
pip install -e .
# 3、安装额外的依赖
# 跑notebook的example
pip install -e ".[notebooks]"
# 开发环境
pip install -e ".[train,dev]"

模型下载:

modelscope download --model facebook/sam3 --local_dir checkpoints

推理脚本:

import torch
#################################### For Image ####################################
from PIL import Image
from sam3.model_builder import build_sam3_image_model
from sam3.model.sam3_image_processor import Sam3Processor
# Load the model
model = build_sam3_image_model()
processor = Sam3Processor(model)
# Load an image
image = Image.open("<YOUR_IMAGE_PATH.jpg>")
inference_state = processor.set_image(image)
# Prompt the model with text
output = processor.set_text_prompt(state=inference_state, prompt="<YOUR_TEXT_PROMPT>")
# Get the masks, bounding boxes, and scores
masks, boxes, scores = output["masks"], output["boxes"], output["scores"]
#################################### For Video ####################################
from sam3.model_builder import build_sam3_video_predictor
video_predictor = build_sam3_video_predictor()
video_path = "<YOUR_VIDEO_PATH>" # a JPEG folder or an MP4 video file
# Start a session
response = video_predictor.handle_request(
    request=dict(
        type="start_session",
        resource_path=video_path,
    )
)
response = video_predictor.handle_request(
    request=dict(
        type="add_prompt",
        session_id=response["session_id"],
        frame_index=0, # Arbitrary frame index
        text="<YOUR_TEXT_PROMPT>",
    )
)
output = response["outputs"]


04更多案例

sam功能视频.mp4

点击可跳转模型链接:https://modelscope.cn/models/facebook/sam3

目录
相关文章
|
2天前
|
云安全 人工智能 自然语言处理
AI说的每一句话,都靠谱吗?
阿里云提供AI全栈安全能力,其中针对AI输入与输出环节的安全合规挑战,我们构建了“开箱即用”与“按需增强”相结合的多层次、可配置的内容安全机制。
|
9天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
3天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
396 184
|
1天前
|
数据采集 消息中间件 人工智能
跨系统数据搬运的全方位解析,包括定义、痛点、技术、方法及智能体解决方案
跨系统数据搬运打通企业数据孤岛,实现CRM、ERP等系统高效互通。伴随数字化转型,全球市场规模超150亿美元,中国年增速达30%。本文详解其定义、痛点、技术原理、主流方法及智能体新范式,结合实在Agent等案例,揭示从数据割裂到智能流通的实践路径,助力企业降本增效,释放数据价值。
|
7天前
|
人工智能 自然语言处理 安全
国内主流Agent工具功能全维度对比:从技术内核到场景落地,一篇读懂所有选择
2024年全球AI Agent市场规模达52.9亿美元,预计2030年将增长至471亿美元,亚太地区增速领先。国内Agent工具呈现“百花齐放”格局,涵盖政务、金融、电商等多场景。本文深入解析实在智能实在Agent等主流产品,在技术架构、任务规划、多模态交互、工具集成等方面进行全维度对比,结合市场反馈与行业趋势,为企业及个人用户提供科学选型指南,助力高效落地AI智能体应用。
|
3天前
|
消息中间件 安全 NoSQL
阿里云通过中国信通院首批安全可信中间件评估
近日,由中国信通院主办的 2025(第五届)数字化转型发展大会在京举行。会上,“阿里云应用服务器软件 AliEE”、“消息队列软件 RocketMQ”、“云数据库 Tair”三款产品成功通过中国信通院“安全可信中间件”系列评估,成为首批获此认证的中间件产品。此次评估覆盖安全可信要求、功能完备性、安全防护能力、性能表现、可靠性与可维护性等核心指标,标志着阿里云中间件产品在多架构适配与安全能力上达到行业领先水平。
305 193

热门文章

最新文章