Transformer 近年来已成为视觉领域的新晋霸主,这个来自 NLP 领域的模型架构在 CV 领域有哪些具体应用?。
Transformer 作为一种基于注意力的编码器 - 解码器架构,不仅彻底改变了自然语言处理(NLP)领域,还在计算机视觉(CV)领域做出了一些开创性的工作。与卷积神经网络(CNN)相比,视觉 Transformer(ViT)依靠出色的建模能力,在 ImageNet、COCO 和 ADE20k 等多个基准上取得了非常优异的性能。
近日,一位名为 Nikolas Adaloglou 的博主撰写了一篇博客长文,综述了 ViT 领域的进展以及 ViT 与其他学科的交叉应用。
本文作者 Nikolas Adaloglou。
Nikolas Adaloglou 是一名机器学习工程师,他对和 AI 相关的 3D 医学成像、图像和视频分析、基于图的深度学习模型以及生成式深度学习感兴趣,致力于借助机器学习推动医学工程的发展。
以下是博客原文:
ViT 的灵感来源于自然语言处理中的自注意力机制,其中将词嵌入替换成了 patch 嵌入。
以合理的规模训练 ViT
知识蒸馏
在 Kaggle 等深度学习竞赛中,集成(ensemble)是非常流行的一种方法。集成大体上是指平均多个已训练模型的输出以进行预测。这种简单的方法非常适合提高测试时的性能,然而它在推理过程中会慢 N 倍(其中 N 表示模型数量)。当在嵌入式设备中部署此类神经网络时,这就成了一个棘手的问题。解决这个问题常用的一种方法是知识蒸馏。
在知识蒸馏中,小模型(学生模型)通常是由一个大模型(教师模型)监督,算法的关键是如何将教师模型的知识迁移给学生模型。
尽管没有足够的基础理论支持,但知识蒸馏已被证明是一种非常有效的技巧。关于为什么集成的输出分布能提供与集成相当的测试性能,还有待发现。而使用集成的输出(略有偏差的平滑标签)相对于真实标签存在性能增益,这更加神秘。
DeiT 模型通过注意力训练数据高效的图像 Transformer 和蒸馏,这表明在没有外部数据的情况下,仅在 ImageNet 上训练 ViT 是可以的。该研究使用来自 Resnet 的已训练好的 CNN 模型作为单一教师模型。直观地讲,强大的数据假设(归纳偏置)让 CNN 比 ViT 更适合做教师网络。
自蒸馏
令人惊讶的是,有研究发现类似方法也可以通过对同一架构的单个模型(教师网络)进行知识蒸馏来实现。这个过程被称为自蒸馏,来自于 Zhang et al.2019 年的论文《Be Your Own Teacher: Improve the Performance of Convolutional Neural Networks via Self Distillation》。自蒸馏就是一种 N=1 的知识蒸馏,自蒸馏(使用具有相同架构的单个训练模型)也可以提高测试准确率。
ViT 的 Hard-label 蒸馏:DeiT 训练策略
在这种方法中,一个额外的可学习全局 token(即蒸馏 token),与 ViT 的 patch 嵌入相连。最关键的是,蒸馏 token 来自训练有素的教师 CNN 主干网络。通过将 CNN 特征融合到 Transformer 的自注意力层中,研究者们在 Imagenet 的 1M 数据上训练 DeiT。
DeiT 模型概览。
DeiT 使用如下损失函数进行训练:
其中 CE 是交叉熵损失函数,σ 是 softmax 函数。Z_cls 和 Z_distill 分别是来自类 token 和蒸馏 token 的学生模型的输出,ytrue 和 yteacher 分别是 ground truth 和教师模型的输出。
这种蒸馏技术使模型用更少的数据获得超强的数据增强,这可能会导致 ground truth 标签不精确。在这种情况下,教师网络似乎会产生更合适的标签。由此产生的模型系列,即数据高效图像 Transformer(DeiTs),在准确率 / 步长时间上与 EfficientNet 相当,但在准确率 / 参数效率上仍然落后。
除了蒸馏,还有一些研究大量使用图像增强来弥补缺乏可用的额外数据。此外,DeiT 依赖于随机深度等数据正则化技术。最终,强大的增强和正则化限制了 ViT 在小数据机制中的过拟合趋势。
Pyramid 视觉 Transformer
Pyramid 视觉 Transformer(PVT)的总体架构。
为了克服注意力机制的二次复杂度,Pyramid 视觉 Transformer(PVT)采用一种称为空间减少注意力 (SRA) 的自注意力变体。其特征是键和值的空间减少,类似于 NLP 领域的 Linformer 注意力。
通过应用 SRA,整个模型的特征空间维度缓慢减少,并通过在所有 transformer block 中应用位置嵌入来增强顺序的概念。PVT 已被用作目标检测和语义分割的主干网络,以处理高分辨率图像。
后来,该研究团队推出改进版 PVT-v2,主要改进如下:
- 重叠 patch 嵌入;
- 卷积前馈网络;
- 线性复杂度自注意力层。
重叠 patch 是改进 ViT 的一个简单而通用的想法,尤其是对于密集任务(例如语义分割)。通过利用重叠区域 /patch,PVT-v2 可以获得图像表征的更多局部连续性。
全连接层(FC)之间的卷积消除了每一层中对固定大小位置编码的需要。具有零填充(zero padding,p=1)的 3x3 深度卷积 (p=1) 旨在补偿模型中位置编码的移除(它们仍然存在,但只存在于输入中)。此过程可以更灵活地处理多种图像分辨率。
最后,使用键和值池化(p=7),自注意力层就减小到了与 CNN 类似的复杂度。
Swin Transformer:使用移位窗口的分层视觉 Transformer
Swin Transformer 旨在从标准 NLP transformer 中建立局部性的思想,即局部或窗口注意力:
在 Swin Transformer 中,局部自注意力被用于非重叠窗口。下一层的窗口到窗口通信通过逐步合并窗口来产生分层表征。
如上图所示,左侧是第一层的常规窗口分区方案,其中在每个窗口内计算自注意力。右侧第二层中的窗口分区被移动了 2 个图像 patch,导致跨越了先前窗口的边界。
局部自注意力随图像大小线性缩放 O (M*N) 而不是 O (N^2),在用于序列长度 N 和 M 窗口大小。
通过合并添加许多局部层,有一个全局表示。此外,特征图的空间维度已显着降低。作者声称在 ImageNet-1K 和 ImageNet-21K 上都取得了有希望的结果。
视觉 Transformer 的自监督训练:DINO
Facebook AI 的研究提出了一个强大的框架用于训练大规模视觉数据。提议的自监督系统创建了如此强大的表征,你甚至不需要在上面微调线性层。这是通过在数据集的冻结训练特征上应用 K - 最近邻 (NN) 来观察到的。作者发现,训练有素的 ViT 可以在没有标签的情况下在 ImageNet 上达到 78.3% 的 top-1 准确率。
该自监督框架如下图所示:
与其他自监督模型相比,他们使用了交叉熵损失,就像在典型的自蒸馏场景中所做的那样。尽管如此,这里的教师模型是随机初始化的,其参数是根据学生参数的指数移动平均值更新的。为了让它 work,研究者将带温度参数的 softmax 应用于具有不同温度的教师和学生模型。具体来说,教师模型得到的温度参数更小,这意味着更敏锐的预测。最重要的是,他们使用了从 SWAV 中获得的多重裁剪方法,效果更佳,在这种情况下教师只能看到全局视图,而学生可以访问转换后的输入图像的全局和局部视图。
对于 CNN 架构来说,该框架并不像对视觉 Transformer 那样有益。那又该如何从图像中提取什么样的特征?
作者将经过训练的 VIT 的自注意力头输出可视化。这些注意力图说明模型自动学习特定于类的特征,导致无监督的对象分割,例如前景与背景。
此属性也出现在自监督预训练的卷积神经网络中,但需要一种特殊的方法来可视化特征。更重要的是,自注意力头学习补充信息并通过为每个头部使用不同的颜色来说明。默认情况下,这根本不是通过自注意力获得的。
DINO 多注意力头可视化。