ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用

简介: ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用

ViT模型的出现标志着Transformer架构在计算机视觉中的成功应用,以下是一个简要的实战与进阶解析:

 

### 实战:使用ViT进行图像分类

 

#### 步骤概述:

 

1. **准备数据**:

  - 首先,准备一个适当的图像分类数据集,如ImageNet,CIFAR-10等。确保数据集包含标签,用于监督学习。

 

2. **加载和预处理数据**:

  - 使用Python的图像处理库(如PIL)加载图像,并进行预处理,例如将图像缩放到模型所需的大小(通常为224x224或者384x384)。

 

3. **加载预训练的ViT模型**:

  - 在PyTorch或TensorFlow中,可以使用Hugging Face Transformers库或官方的模型库来加载预训练的ViT模型。常用的预训练模型包括ViT-B/32、ViT-L/16等,选择适合任务和资源限制的模型。

 

4. **微调ViT模型**:

  - 将加载的ViT模型进行微调以适应特定的图像分类任务。微调通常包括解冻最后几层,或者使用较小的学习率调整整个模型的权重。

 

5. **训练和评估模型**:

  - 使用训练集训练ViT模型,并在验证集上进行评估。监控模型在训练集和验证集上的准确率、损失值等指标。

 

6. **模型调优和测试**:

  - 根据验证集的表现调整超参数(如学习率、批量大小等),最终在测试集上评估模型的性能。

 

#### 进阶:ViT模型的特点和优势

 

- **全局感知**:ViT模型通过自注意力机制(self-attention)实现对整个图像的全局感知,而不是像传统卷积神经网络(CNN)一样依赖于局部滑动窗口。

 

- **可扩展性**:ViT模型在处理不同大小的图像时具有较好的可扩展性,只需微调输入和输出的层即可适应不同的图像尺寸。

 

- **适应多任务学习**:由于Transformer的结构和对比学习的特性,ViT模型可以轻松地扩展到多任务学习或零样本学习(zero-shot learning)等场景。

 

- **预训练和微调**:ViT模型在大规模图像数据上进行预训练,然后通过微调适应特定任务,这种方法使得模型能够更快速地收敛和适应新数据。

 

 

代码示例

import tensorflow as tf
from tensorflow.keras import layers, models, initializers
import numpy as np
 
 
class PatchEmbedding(layers.Layer):
    def __init__(self, patch_size, num_patches, embed_dim):
        super(PatchEmbedding, self).__init__()
        self.num_patches = num_patches
        self.proj = layers.Dense(embed_dim)
        self.cls_token = self.add_weight("cls_token", shape=[1, 1, embed_dim], initializer=initializers.Zeros())
        self.pos_embed = self.add_weight("pos_embed", shape=[1, num_patches + 1, embed_dim], initializer=initializers.Zeros())
 
    def call(self, x):
        batch_size, height, width, channels = x.shape
        patch_size_h, patch_size_w = height // self.num_patches, width // self.num_patches
        x = tf.image.extract_patches(x, sizes=[1, patch_size_h, patch_size_w, 1], strides=[1, patch_size_h, patch_size_w, 1], rates=[1, 1, 1, 1], padding='VALID')
        x = tf.reshape(x, [batch_size, -1, patch_size_h * patch_size_w * channels])
        x = self.proj(x)
 
        cls_tokens = tf.broadcast_to(self.cls_token, [batch_size, 1, self.proj.units])
        x = tf.concat([cls_tokens, x], axis=1)
        x += self.pos_embed
        return x
 
 
class MultiHeadSelfAttention(layers.Layer):
    def __init__(self, embed_dim, num_heads):
        super(MultiHeadSelfAttention, self).__init__()
        self.embed_dim = embed_dim
        self.num_heads = num_heads
        self.proj_qkv = layers.Dense(3 * embed_dim)
        self.proj_out = layers.Dense(embed_dim)
 
    def call(self, x):
        batch_size, num_patches, embed_dim = x.shape
        qkv = self.proj_qkv(x)
        q, k, v = tf.split(qkv, 3, axis=-1)
        q = self.split_heads(q)
        k = self.split_heads(k)
        v = self.split_heads(v)
        attention_scores = tf.einsum('bhqd,bhkd->bhqk', q, k) / tf.math.sqrt(float(embed_dim))
        attention_weights = tf.nn.softmax(attention_scores, axis=-1)
        attention_output = tf.einsum('bhqk,bhvd->bhqd', attention_weights, v)
        attention_output = self.combine_heads(attention_output)
        return self.proj_out(attention_output)
 
    def split_heads(self, x):
        batch_size, num_patches, embed_dim = x.shape
        depth = embed_dim // self.num_heads
        x = tf.reshape(x, [batch_size, num_patches, self.num_heads, depth])
        return tf.transpose(x, perm=[0, 2, 1, 3])
 
    def combine_heads(self, x):
        batch_size, num_heads, num_patches, depth = x.shape
        x = tf.transpose(x, perm=[0, 2, 1, 3])
        return tf.reshape(x, [batch_size, num_patches, num_heads * depth])
 
 
class TransformerBlock(layers.Layer):
    def __init__(self, embed_dim, num_heads, mlp_dim, dropout_rate):
        super(TransformerBlock, self).__init__()
        self.mha = MultiHeadSelfAttention(embed_dim, num_heads)
        self.mlp = models.Sequential([
            layers.Dense(mlp_dim, activation=tf.nn.gelu),
            layers.Dense(embed_dim)
        ])
        self.layernorm1 = layers.LayerNormalization(epsilon=1e-6)
        self.layernorm2 = layers.LayerNormalization(epsilon=1e-6)
        self.dropout1 = layers.Dropout(dropout_rate)
        self.dropout2 = layers.Dropout(dropout_rate)
 
    def call(self, x, training):
        attn_output = self.mha(self.layernorm1(x))
        attn_output = self.dropout1(attn_output, training=training)
        out1 = x + attn_output
        mlp_output = self.mlp(self.layernorm2(out1))
        mlp_output = self.dropout2(mlp_output, training=training)
        return out1 + mlp_output
 
 
def create_vit_model(input_shape, patch_size, num_layers, num_patches, embed_dim, num_heads, mlp_dim, num_classes, dropout_rate):
    inputs = layers.Input(shape=input_shape)
    x = PatchEmbedding(patch_size, num_patches, embed_dim)(inputs)
 
    for _ in range(num_layers):
        x = TransformerBlock(embed_dim, num_heads, mlp_dim, dropout_rate)(x)
 
    x = layers.LayerNormalization(epsilon=1e-6)(x)
    x = x[:, 0]
    x = layers.Dense(num_classes)(x)
 
    model = models.Model(inputs=inputs, outputs=x)
    return model
 
 
# 超参数
input_shape = (224, 224, 3)
patch_size = 16
num_layers = 12
num_patches = (input_shape[0] // patch_size) * (input_shape[1] // patch_size)
embed_dim = 768
num_heads = 12
mlp_dim = 3072
num_classes = 10
dropout_rate = 0.1
 
vit_model = create_vit_model(input_shape, patch_size, num_layers, num_patches, embed_dim, num_heads, mlp_dim, num_classes, dropout_rate)
vit_model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
 
vit_model.summary()

### 结论

 

ViT作为一种新兴的计算机视觉模型,不仅仅在图像分类任务上表现出色,还为未来的多模态任务(如图像描述生成、视觉问答等)提供了新的思路和可能性。随着对Transformer架构的理解深入和计算资源的增加,ViT模型及其衍生变体有望在更广泛的视觉任务中发挥重要作用。

目录
相关文章
|
1月前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
2月前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
182 3
|
25天前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
145 83
|
1天前
|
容灾 网络协议 数据库
云卓越架构:云上网络稳定性建设和应用稳定性治理最佳实践
本文介绍了云上网络稳定性体系建设的关键内容,包括面向失败的架构设计、可观测性与应急恢复、客户案例及阿里巴巴的核心电商架构演进。首先强调了网络稳定性的挑战及其应对策略,如责任共担模型和冗余设计。接着详细探讨了多可用区部署、弹性架构规划及跨地域容灾设计的最佳实践,特别是阿里云的产品和技术如何助力实现高可用性和快速故障恢复。最后通过具体案例展示了秒级故障转移的效果,以及同城多活架构下的实际应用。这些措施共同确保了业务在面对网络故障时的持续稳定运行。
|
24天前
|
机器学习/深度学习 测试技术 定位技术
新扩散模型OmniGen一统图像生成,架构还高度简化、易用
近期,一篇题为“OmniGen: Unified Image Generation”的论文介绍了一种新型扩散模型OmniGen,旨在统一图像生成任务。OmniGen架构简洁,无需额外模块即可处理多种任务,如文本到图像生成、图像编辑等。该模型通过修正流优化,展现出与现有模型相当或更优的性能,尤其在图像编辑和视觉条件生成方面表现突出。OmniGen仅含3.8亿参数,却能有效处理复杂任务,简化工作流程。尽管如此,OmniGen仍存在对文本提示敏感、文本渲染能力有限等问题,未来研究将继续优化其架构与功能。
47 16
|
2月前
|
Cloud Native 安全 持续交付
深入理解微服务架构及其在现代软件开发中的应用
深入理解微服务架构及其在现代软件开发中的应用
52 4
|
2月前
|
网络协议 网络架构
TCP/IP协议架构:四层模型详解
在网络通信的世界里,TCP/IP协议栈是构建现代互联网的基础。本文将深入探讨TCP/IP协议涉及的四层架构,以及每一层的关键功能和作用。
202 5
|
2月前
|
监控 持续交付 API
深入理解微服务架构及其在现代应用开发中的应用
深入理解微服务架构及其在现代应用开发中的应用
30 4
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型演进与经典架构
本文探讨了AI计算模式对AI芯片设计的重要性,通过分析经典模型结构设计与演进、模型量化与压缩等核心内容,揭示了神经网络模型的发展现状及优化方向。文章详细介绍了神经网络的基本组件、主流模型结构、以及模型量化和剪枝技术,强调了这些技术在提高模型效率、降低计算和存储需求方面的关键作用。基于此,提出了AI芯片设计应考虑支持神经网络计算逻辑、高维张量存储与计算、灵活的软件配置接口、不同bit位数的计算单元和存储格式等建议,以适应不断发展的AI技术需求。
44 5
|
2月前
|
运维 Kubernetes Docker
深入理解容器化技术及其在微服务架构中的应用
深入理解容器化技术及其在微服务架构中的应用
66 1

热门文章

最新文章