一文介绍CNN/RNN/GAN/Transformer等架构 !!

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 一文介绍CNN/RNN/GAN/Transformer等架构 !!

前言

本文旨在介绍深度学习架构,包括卷积神经网络CNN循环神经网络RNN生成对抗网络GANTransformerEncoder-Decoder架构。

1、卷积神经网络(CNN)

卷积神经网络CNN是一种人工神经网络,旨在处理和分析具有网格状拓扑结构的数据,如图像和视频。将CNN想象成一个多层过滤器,可以处理图像以提取有意义的特征并进行推理预测。

想象一下,假设我们有一张手写数字的照片,希望计算机能识别出这个数字。CNN的工作原理是在图像上应用一系列滤波器,逐渐提取出越来越复杂的特征。浅层的滤波器检测边缘和线条等简单特征,而深层的滤波器则检测形状和数字等更复杂的模式特征。

CNN的层可分为三种类型:卷积层、池化层和全连接层。

  • 卷积层:这些层将滤波器应用于图像,每个滤波器在图像上滑动,计算滤波器与其覆盖像素之间的点积。这一过程会生成新的特征图,突出图像中的特定模式。这个过程会用不同的滤波器重复多次,从而生成一组捕捉图像不同方面的特征图。
  • 池化层:池化层对特征图进行下采样操作,在保留重要特征的同时减少数据的空间维度。这有助于降低计算复杂度,防止过拟合。最常见的池化类型是最大值池化,它从像素的一个小邻域中选择最大值。
  • 全连接层:这些层与传统神经网络中的层类似。它们将一层中的每个神经元与下一层中的每个神经元连接起来。卷积层和池化层的输出会被平铺并通过一个或多个全连接层,从而让网络做出最终预测,例如识别图像中的数字。

总之,CNN是一种神经网络,旨在处理非结构化数据,如图像。它的工作原理是对图像应用一系列滤波器或核函数,逐渐提取更复杂的特征。然后,通过池化层,以减少空间维度,防止过拟合。最后,输出将通过全连接层进行最终预测。

2、循环神经网络(RNN)

循环神经网络RNN是一种人工神经网络,旨在处理时间序列、语音和自然语言等序列数据。将RNN想象成传送带,一次处理一个元素的信息,从而“记住”前一个元素的信息,对下一个元素做出预测。

想象一下,我们有一串单词,我们希望计算机生成这串单词中的下一个单词。RNN的工作原理是每次处理序列中的每个单词,并利用前一个单词的信息预测下一个单词。

RNN的关键组成部分是递归连接。它允许信息从一个时间步流动到下一个时间步。递归连接是神经元内部的一个连接,它能“记住”上一个时间步的信息。

RNN可分为三个主要部分:输入层、递归层和输出层。

  • 输入层:输入层接收每个时刻的输入信息,例如序列中的一个单词。
  • 递归层:递归层处理来自输入层的信息,利用递归连接“记忆”前一时刻的信息。递归层包含一组神经元,每个神经元都与自身有递归连接,并与当前时刻的输入进行连接。
  • 输出层:输出层根据递归层处理的信息生成预测结果。在生成序列汇中下一个单词的情况下,输出层会预测序列中前一个单词之后最有可能出现的单词。

总之,RNN是一种用于处理顺序数据的神经网络,它每次处理一个元素的信息,利用递归连接来“记忆”前一个元素的信息。递归层允许网络处理整个序列,使其非常适合语言翻译、语音识别和时间序列预测等任务。

3、生成对抗网络(GAN)

生成对抗网络GAN是一种深度学习架构,它使用两个神经网络(生成器和判别器)来创建新的、逼真的数据。将GAN想象成两个敌对的艺术家,一个创造假艺术,另一个则试图辨别真假。


GAN的目标是在图像、音频和文本等不同领域生成高质量的真实数据样本。生成器网络创建新样本,而判别器网络则评估所生成样本的真实性。这两个网络以对抗的方式同时进行训练,生成器试图生成更逼真的样本,而判别器则更善于检测伪造样本。

GAN的两个主要组成部分如下:

  • 生成器:生成器网络负责创建新样本。它将随机噪声向量作为输入,并生成输出样本,如图像或句子。生成器通过最小化损失函数来测量生成样本与真实数据之间的差异,从而训练生成更真实的样本。
  • 判别器:判别器网络评估生成样本的真伪。它将一个样本作为输入,然后输出一个概率,表明该样本是真的还是假的。判别器通过损失函数来测量真实样本和生成样本概率之间的差异,从而训练判别器分辨真假样本。

GAN的对抗源于生成器和判别器之间的竞争。生成器试图生成更逼真的样本来欺骗判别器,而判别器则试图提高自己分辨真假样本的能力。这个过程会一直持续下去,直到生成器生成高质量、逼真的数据,而这些数据很难与真实数据区分开来。

总之,GAN是一种深度学习架构,它使用两个神经网络(生成器和判别器)来创建新的真实数据。生成器创建新样本,判别器评估样本的真实性。这两个网络以对抗的方式进行训练,生成器生成更逼真的样本,而判别器则提高检测真假样本的能力。GAN目前可应用于各种领域,如图像和视频生成、音乐合成和文本到图像合成等。

4、Transformer 架构

Transformer是一种神经网络架构,广泛应用于自然语言处理NLP任务,如翻译、文本分类和问答系统。它们是在2017年发表的开创性论文“Attention Is All You Need”中引入的。

将Transformer想象成一个复杂的语言模型,通过将文本分解成更小的片段并分析它们之间的关系来处理文本。然后,该模型可以对各种查询生成连贯流畅的回复。

Transformer由多个重复的模块组成,称为层。每个层包含两个主要组件:

  • 自注意力机制:自注意力机制允许模型分析输入文本不同部分之间的关系。它的工作原理是为输入序列中的每个单词分配权重,以显示其与当前上下文的相关性。这样,模型就能将注意力集中在重要的词语上,而淡化不那么相关的词语的重要性。
  • 前馈神经网络:前馈神经网络是处理自我注意机制输出的多层感知机。它们负责学习输入文本中单词之间的复杂关系。

Transformer的关键创新之处在于使用自注意力机制,这使得模型能够高效处理长序列文本,而无需进行昂贵的递归或卷积操作。这使得Transformer的计算效率高,能够有效地完成各种NLP任务。

简单地说,Transformer是一种功能强大的神经网络架构,专为自然语言处理任务而设计。它们通过将文本分解成更小的片段,并通过自注意机制分析片段之间的关系来处理文本。这样,该模型就能对各种查询生成连贯流畅的回复。

5、Encoder-Decoder架构

编码器-解码器架构在自然语言处理NLP任务中非常流行。它们通常用于序列到序列问题,如机器翻译,其目标是将一种语言(源语言)的输入文本转换为另一种语言(目标语言)的相应文本。

把编码器—解码器想象成一个翻译员,他听一个人说外语,同时将其翻译成听者的母语。

该架构由两个主要部分组成:

编码器:编码器接收输入序列(源文本)并按顺序进行处理,生成一个紧凑的表示形式,通常称为 context vector 或 context embedding。这种表示概括了输入序列,并包含有关其语法、语义和上下文的信息。编码器可以是递归神经网络RNN,也可以是Transformer,具体取决于具体任务和实现方式。

  • 解码器:解码器采用编码器生成的上下文向量,逐个元素生成输出序列(目标文本)。解码器通常是一个递归神经网络或Transformer,与编码器类似。它根据前面的单词和上下文向量中包含的信息预测目标序列中的下一个单词,从而依次生成输出序列。

在训练期间,解码器接收真实的目标序列,其目标是预测序列中的下一个单词。在推理过程中,解码器接收直到此时为止生成的文本,并用它来预测下一个单词。

总之,编码器-解码器架构是自然语言处理任务中的一种流行方法,尤其适用于序列-序列问题,如机器翻译。该架构由一个编码器和一个解码器组成,编码器负责处理输入序列并生成一个紧凑的向量表示,解码器负责根据该表示生成输出序列。这样,该模型就能将一种语言的输入文本翻译成另一种语言的相应文本。

参考: AI算法之道

目录
相关文章
|
1月前
|
机器学习/深度学习 传感器 自然语言处理
基于Transformer架构的时间序列数据去噪技术研究
本文介绍了一种基于Transformer架构的时间序列去噪模型。通过生成合成数据训练,模型在不同噪声条件下展现出强去噪能力。文章详细解析了Transformer的输入嵌入、位置编码、自注意力机制及前馈网络等关键组件,并分析实验结果与注意力权重分布。研究为特定任务的模型优化和专业去噪模型开发奠定了基础。
135 14
基于Transformer架构的时间序列数据去噪技术研究
|
2月前
|
机器学习/深度学习 PyTorch 调度
MiTS与PoTS:面向连续值时间序列的极简Transformer架构
本文探讨了将标准Transformer架构应用于连续值时间序列数据的最小化调整方案,提出了极简时间序列Transformer(MiTS-Transformer)和位置编码扩展时间序列Transformer(PoTS-Transformer)。通过替换嵌入层为线性映射层,MiTS-Transformer实现了对正弦波序列的有效学习。而PoTS-Transformer则通过在高维空间中进行位置编码,结合低维模型架构,解决了长序列处理与过拟合问题。实验结果表明,这两种模型在不同类型的时间序列预测任务中表现出色,为基于Transformer的时间序列预测提供了高效基准方案。
68 5
MiTS与PoTS:面向连续值时间序列的极简Transformer架构
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
5月前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
443 84
|
4月前
|
机器学习/深度学习 人工智能 NoSQL
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
Meta研究团队开发的记忆层技术通过替换Transformer中的前馈网络(FFN),显著提升了大语言模型的性能。记忆层使用可训练的固定键值对,规模达百万级别,仅计算最相似的前k个键值,优化了计算效率。实验显示,记忆层使模型在事实准确性上提升超100%,且在代码生成和通用知识领域表现优异,媲美4倍计算资源训练的传统模型。这一创新对下一代AI架构的发展具有重要意义。
184 11
记忆层增强的 Transformer 架构:通过可训练键值存储提升 LLM 性能的创新方法
|
4月前
|
机器学习/深度学习 人工智能 并行计算
Titans:谷歌新型神经记忆架构,突破 Transformer 长序列处理的瓶颈
Titans 是谷歌推出的新型神经网络架构,通过神经长期记忆模块突破 Transformer 在处理长序列数据时的瓶颈,支持并行计算,显著提升训练效率。
151 5
Titans:谷歌新型神经记忆架构,突破 Transformer 长序列处理的瓶颈
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
RNN回归!Bengio新作大道至简与Transformer一较高下
研究团队提出了一种名为“minimal LSTMs and GRUs”的新型RNN模型,通过简化传统LSTM和GRU结构,去除了隐藏状态对输入、遗忘和更新门的依赖,实现了无需BPTT的高效并行训练。该模型不仅保持了RNN处理序列数据的优势,还大幅提升了训练速度,在多个任务上的表现与Transformer相当,同时减少了参数量。研究结果发表于论文《minimal LSTMs and GRUs》。
97 9
|
6月前
|
机器学习/深度学习 自然语言处理 计算机视觉
探索深度学习中的Transformer架构
探索深度学习中的Transformer架构
133 2
|
5月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
1月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
145 12

热门文章

最新文章