基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真

简介: **算法预览图省略**- **软件版本**: MATLAB 2022a- **核心代码片段**略- **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。- **CNN**利用卷积捕获时间序列的空间特征。- **LSTM**通过门控机制处理长序列依赖,避免梯度问题。- **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg

2.算法运行软件版本
matlab2022a

3.部分核心程序

```for i=1:Iter
i
for j=1:Npeop
rng(i+j)
if func_obj(x1(j,:))<pbest1(j)
p1(j,:) = x1(j,:);%变量
pbest1(j) = func_obj(x1(j,:));
end
if pbest1(j)<gbest1
g1 = p1(j,:);%变量
gbest1 = pbest1(j);
end

    v1(j,:) = 0.8*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
    x1(j,:) = x1(j,:)+v1(j,:); 

    for k=1:dims
        if x1(j,k) >= tmps(2,k)
           x1(j,k) = tmps(2,k);
        end
        if x1(j,k) <= tmps(1,k)
           x1(j,k) = tmps(1,k);
        end
    end

    for k=1:dims
        if v1(j,k) >= tmps(2,k)/2
           v1(j,k) =  tmps(2,k)/2;
        end
        if v1(j,k) <= tmps(1,k)/2
           v1(j,k) =  tmps(1,k)/2;
        end
    end

end
gb1(i)=gbest1 
AI 代码解读

end

figure;
plot(gb1,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('优化迭代次数');
ylabel('适应度值');
.....................................................
figure;
plot(IT(1:1:end),Accuracy(1:1:end));
xlabel('epoch');
ylabel('RMSE');
%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1Vmax2;
T_sim2=Dpre2
Vmax2;

%网络结构
analyzeNetwork(Net)

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on
subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);

save R2.mat Num2 Tat_test T_sim2 gb1 Accuracy

```

4.算法理论概述
基于粒子群优化(Particle Swarm Optimization, PSO)的卷积神经网络-长短期记忆网络(Convolutional Neural Network - Long Short-Term Memory, CNN-LSTM)模型在时间序列回归预测中,结合了深度学习的强大表达能力和优化算法的高效搜索能力,为复杂时间序列数据的预测提供了一种强有力的解决方案。

4.1 卷积神经网络(CNN)
CNN以其在图像识别领域的卓越表现而闻名,但其在时间序列分析中也显示出了强大的潜力。CNN通过局部连接和权值共享减少参数数量,利用卷积层捕获输入数据的空间特征。

image.png

4.2 长短期记忆网络(LSTM)
LSTM是RNN的一种变体,特别擅长处理长序列依赖问题。它通过门控机制控制信息的遗忘、更新和输出,有效缓解了梯度消失/爆炸问题。
image.png

4.3 CNN-LSTM结合PSO的时间序列预测
在时间序列预测任务中,首先使用CNN对输入序列进行特征提取,然后将提取到的特征作为LSTM的输入,进一步捕捉序列中的时序依赖关系。整个网络的参数(包括CNN的卷积核权重、LSTM的门控参数等)构成了PSO算法的搜索空间。

结合PSO的过程:

初始化一组粒子,每个粒子代表一组CNN-LSTM模型的参数。
对于每个粒子,构建相应的CNN-LSTM模型并训练,评估其在验证集上的预测性能(如均方误差MSE)作为适应度函数。
根据PSO算法更新粒子的位置和速度,不断寻找更优的模型参数配置。
迭代此过程直至满足停止条件(如达到最大迭代次数或找到足够好的解)。

相关文章
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
233 10
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
纵观近年的顶会论文和研究热点,我们不得不承认一个现实:CNN相关的研究论文正在减少,曾经的"主角"似乎正逐渐淡出研究者的视野。
217 11
为什么卷积现在不火了:CNN研究热度降温的深层原因分析
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
584 7

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等