Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战

简介: Python基于OpenCV和卷积神经网络CNN进行车牌号码识别项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

车牌识别系统(Vehicle License Plate Recognition,VLPR) 是计算机视频图像识别技术在车辆牌照识别中的一种应用。车牌识别在高速公路车辆管理中得到广泛应用,电子收费(ETC)系统中,也是结合DSRC技术识别车辆身份的主要手段。车牌识别技术要求能够将运动中的汽车牌照从复杂背景中提取并识别出来,通过车牌提取、图像预处理、特征提取、车牌字符识别等技术,识别车辆牌号、颜色等信息,目前最新的技术水平为字母和数字的识别率可达到99.7%,汉字的识别率可达到99%。在停车场管理中,车牌识别技术也是识别车辆身份的主要手段。

车牌识别系统(Vehicle License Plate Recognition)是计算机视频图像识别技术在车辆牌照识别中的一种应用,通常一个车牌识别系统主要包括以下这四个部分:车辆图像获取、车牌定位、车牌字符分割、车牌字符识别。本项目通过OpenCV和卷积伸进网络CNN进行实现。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

数据详情如下(部分展示):

image.png

上图为36种类别,包括26个大写英文字母和0-9数字。

image.png

上图为某轿车的图片。

3.数据预处理

3.1 加载和读取数据

关键代码:

image.png

使用级联分类器检测车牌的图片上的数据,然后返回处理后的图像。

4.探索性数据分析

4.1.展示输入的图像

关键代码如下:

image.png

 

结果输出如下:

image.png

4.2.车牌检测图像

关键代码:

image.png

输出:

image.png

4.3.车牌图像

关键代码:

image.png

输出:

image.png

4.4.车牌轮廓图像

关键代码:

image.png

输出:

image.png

image.png

4.5.车牌号展示

关键代码:

image.png

输出:

image.png

5.特征工程

5.1.生成训练数据和验证数据

使用图片数据生成器ImageDataGenerator来生成训练数据和验证数据集。

关键代码如下:

image.png

6.构建CNN检测模型

主要使用CNN分类算法,用于目标检测。 

6.1.建立车牌检测模型

编号

模型名称

参数

1

CNN分类模型

loss='sparse_categorical_crossentropy'

2

optimizer=optimizers.Adam(lr=0.0001)

3

metrics=[custom_f1score]

关键代码如下:

image.png

6.2.模型信息

关键代码:

image.png

输出:

image.png

从上图可以清晰地看出神经网络的层数和每层网络的类型,同时可以看到模型的总参数为757268

7.模型评估

7.1.评估指标

关键代码:

image.png

F1分值:99.11%

7.2.预测结果展示

关键代码:

image.png

输出结果:

DL8CAF5030

image.png

image.png

8.结论与展望

综上所述,本文采用OpenCV对图像进行处理、应用CNN卷积神经网络进行车牌识别,最终证明了我们提出的模型效果良好。准确率达到了99.11%,可用于日常生活中进行建模预测,以提高价值。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1t4DdmX77ZCjdPL4XTRcjzQ 
提取码:3hxz
相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
1178 55
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
615 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
6月前
|
机器学习/深度学习 数据采集 算法
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
【CNN-BiLSTM-attention】基于高斯混合模型聚类的风电场短期功率预测方法(Python&matlab代码实现)
358 4
|
9月前
|
机器学习/深度学习 算法 测试技术
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
本文探讨了基于图的重排序方法在信息检索领域的应用与前景。传统两阶段检索架构中,初始检索速度快但结果可能含噪声,重排序阶段通过强大语言模型提升精度,但仍面临复杂需求挑战
307 0
图神经网络在信息检索重排序中的应用:原理、架构与Python代码解析
|
10月前
|
数据可视化 Python
【负荷预测】基于变分模态分解(VMD-CNN-LSTM)的短期电力负荷预测【Python】
本项目实现了一种基于变分模态分解(VMD)的短期电力负荷预测模型——VMD-CNN-LSTM。通过VMD技术将原始电力负荷数据分解为多个平稳子序列,结合温度和时间等特征构建矩阵,输入CNN-LSTM模型训练,最终叠加重构得到预测结果。此方法有效应对非线性和非平稳性引起的误差,精度高且稳定性强。程序采用Python编写,注释清晰,运行稳定,并提供直观的可视化结果。附带部分代码及详细运行结果展示,下载链接已提供。
|
11月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
636 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
12月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
1174 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
12月前
|
机器学习/深度学习 IDE 开发工具
基于OpenCV的车牌识别系统源码分享
基于OpenCV的车牌识别系统主要利用图像边缘和车牌颜色定位车牌,再利用OpenCV的SVM识别具体字符,从而达到车牌识别的效果。
541 4
基于OpenCV的车牌识别系统源码分享
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
637 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
485 8

推荐镜像

更多