Python基于卷积神经网络CNN模型和VGG16模型进行图片识别项目实战

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python基于卷积神经网络CNN模型和VGG16模型进行图片识别项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

深度学习(Deep Learning,DL)是机器学习研究中的一个新的领域,源自人工神经网络, 其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释图像、声音、文本等数据。深度学习属于无监督学习,通过组合低层特征形成更加抽象的高层特征或属性特征,以发现数据的分布式特征表示,学习更有用的特征,从而最终提高分类或预测的准确性。卷积神经网络(CNN)是深度学习框架的一种。CNN 的特征检测层通过训练数据进行学习,所以在使用时,避免了显式的特征抽取,而隐式地从训练数据中进行学习;再者由于同一特征映射面上的神经元权值相同,所以网络可以并行学习。CNN 以其局部权值共享的特殊结构在语音识别和图像处理方面有着独特的优越性,其布局更接近于实际的生物神经网络,权值共享降低了网络的复杂性, 特别是多维输入向量的图像可以直接输入网络这一特点避免了特征提取和分类过程中数据重建的复杂度。

卷积神经网络(CNN)是一个多层的神经网络,它的基本结构就是输入层、卷积层(conv)、子采样层(pool-ing)、全连接层、输出层(分类器)。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

数据详情如下(部分展示):

image.png

上图为六种类型的图片。

image.png

上图为建筑类的图片,部分作为展示。

3.数据预处理

3.1 加载和读取数据

关键代码:

image.png

4.探索性数据分析

4.1.检查目标变量的分布

用Pandas工具进行统计,输出结果如下:

image.png

图形化展示如下:

image.png

从上图可以清晰地看到每种类型图片的数量分布。

4.2.训练集图片类别饼图

image.png

通过上图可以看到六种类型的图片占比基本一致。

4.3.随机展示图片

image.png

上图为随机展示的一张图片。

image.png

上图为随机展示的25张图片。

5.特征工程

5.1.数据标准化

关键代码如下:

image.png

把训练集和测试集图片数据进行标准化。

6.构建模型

主要使用使用CNN算法和VGG16网络,用于目标分类。 

6.1建立简单的CNN模型

编号

模型名称

参数

1

CNN分类模型

optimizer='adam'

2

loss='sparse_categorical_crossentropy'

3

metrics=['acc']

关键代码如下:

image.png

6.1.1.绘制准确率和损失曲线图

image.png

关键代码如下:

image.png

6.1.2.模型评估

模型损失:

image.png

随机绘图:针对预测的结果进行随机绘图。

image.png

针对分错类的图片进行绘图:随机绘制25张图片。

image.png

混淆矩阵:

image.png

关键代码:

image.png

6.2.应用VGG16模型

关键代码:

image.png

6.2.1.PCA降维

image.png

关键代码:

image.png

6.2.2.绘制准确率和损失曲线图

image.png

6.2.3.最终模型准确率

准确率:89%

关键代码如下:

image.png

7.结论与展望

基于深度学习的研究已经成为当今机器智能领域的热门方向,越来越多的科研人员将目光锁定在深度学习的研究和应用上。而卷积神经网络(CNN)作为一种受欢迎的深度学习框架,在图像识别和图像分类方面的优势也越来越明显。

综上所述,本文采用了CNN和VGG模型,最终证明了我们提出的模型效果良好。准确率达到了89%,可用于日常生活中进行建模预测,以提高价值。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/1IVvenC0-rAbCD8qcvqaBzw 
提取码:weha
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
打赏
0
0
0
0
48
分享
相关文章
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
49 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
87 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
26天前
|
公司电脑网络监控场景下 Python 广度优先搜索算法的深度剖析
在数字化办公时代,公司电脑网络监控至关重要。广度优先搜索(BFS)算法在构建网络拓扑、检测安全威胁和优化资源分配方面发挥重要作用。通过Python代码示例展示其应用流程,助力企业提升网络安全与效率。未来,更多创新算法将融入该领域,保障企业数字化发展。
44 10
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
126 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
79 11
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
220 10

热门文章

最新文章