基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库

简介: **核心程序**: 完整版代码附中文注释,确保清晰理解。**理论概述**: 利用CNN从视频中学习步态时空特征。**系统框架**:1. 数据预处理2. CNN特征提取3. 构建CNN模型4. 训练与优化5. 识别测试**CNN原理**: 卷积、池化、激活功能强大特征学习。**CASIA数据库**: 高质量数据集促进模型鲁棒性。**结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。

1.算法运行效果图预览
(完整程序运行后无水印)

1.训练过程

image.png

2.样本库

image.png
image.png

3.提取的步态能量图

image.png

4.步态识别结果和样本真实标签

image.png

2.算法运行软件版本
MATLAB2022a

3.部分核心程序
(完整版代码包含详细中文注释,训练CASIA库)

```digitDatasetPath = ['步态能量图\0\'];
imds = imageDatastore(digitDatasetPath,'IncludeSubfolders', true, 'LabelSource', 'foldernames');
%划分数据为训练集合验证集,训练集中每个类别包含1张图像,验证集包含其余图像的标签
numTrainFiles = 2;%设置每个类别的训练个数
[imdsTrain, imdsValidation] = splitEachLabel(imds,0.8);

%定义卷积神经网络的基础结构
layers = [
imageInputLayer([400 120 1]);%注意,400,150为能量图的大小,不能改
............................................................
%全连接层
fullyConnectedLayer(20);
%softmax
softmaxLayer;
%输出分类结果
classificationLayer;];

%设置训练参数
options = trainingOptions('sgdm', ...
'InitialLearnRate', 0.0001, ...
'MaxEpochs', 1000, ...
'Shuffle', 'every-epoch', ...
'ValidationData', imdsValidation, ...
'ValidationFrequency', 10, ...
'Verbose', false, ...
'Plots', 'training-progress');

%使用训练集训练网络
net = trainNetwork(imdsTrain, layers, options);

save CNN.mat net
05_001m

```

4.算法理论概述
步态识别是一种生物特征识别技术,它通过个体走路的方式(如步长、步频、肢体摆动等)来辨认个人身份。基于卷积神经网络(Convolutional Neural Networks, CNN)的步态识别方法,利用深度学习的强大特征提取能力,可以从视频序列中自动学习步态的时空特征,进而实现高效的个体识别。

4.1步态识别系统框架
一个典型的基于CNN的步态识别系统包括以下几个关键步骤:

数据预处理:包括图像标准化、尺寸统一、背景消除等,以减少噪声和无关因素的干扰。
特征提取:利用CNN自动提取步态的时空特征。
模型构建:设计CNN架构,包括卷积层、池化层、全连接层及输出层等。
训练与优化:使用带标签的步态数据对模型进行训练,通过反向传播和优化算法(如Adam、SGD)调整权重。
识别测试:对新的步态样本进行预测,输出最可能的身份标签。
4.2 CNN原理及数学表述
CNN通过卷积层、池化层、激活函数等组件来学习特征。以一个简单的CNN层为例:

image.png

 步态识别中的CNN模型通常包含多个卷积层和池化层,用于提取步态序列中的时空特征。每一帧步态图像经过卷积和池化后,特征逐渐抽象,最终通过全连接层映射到分类标签上。

4.3 CASIA步态数据库
CASIA步态数据库是中国科学院自动化研究所发布的权威步态数据集,包含大量个体在不同视角、不同衣着条件下的行走视频。利用此数据库进行训练和测试,要求模型具有良好的泛化能力和鲁棒性。

   基于CNN的步态识别技术通过深度学习模型强大的特征学习能力,实现了对步态序列的有效分析和个体身份的准确识别。结合如CASIA这样的高质量步态数据库,该方法在实际应用中展现出优异的性能,特别是在监控、安全认证等领域有着广泛的应用前景。
相关文章
|
14天前
|
算法
基于GA遗传优化的离散交通网络双层规划模型设计matlab仿真
该程序基于GA遗传优化设计了离散交通网络的双层规划模型,以路段收费情况的优化为核心,并通过一氧化碳排放量评估环境影响。在MATLAB2022a版本中进行了验证,显示了系统总出行时间和区域排放最小化的过程。上层模型采用多目标优化策略,下层则确保总阻抗最小,实现整体最优解。
|
5天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
7天前
|
机器学习/深度学习 算法
基于小波神经网络的数据分类算法matlab仿真
该程序基于小波神经网络实现数据分类,输入为5个特征值,输出为“是”或“否”。使用MATLAB 2022a版本,50组数据训练,30组数据验证。通过小波函数捕捉数据局部特征,提高分类性能。训练误差和识别结果通过图表展示。
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
3月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
1月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
34 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
1月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
35 0
|
1月前
|
机器学习/深度学习 自然语言处理 TensorFlow
|
2月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
122 0