CUDA编程模型都改了!英伟达架构师团队撰文详解:Hopper为啥这么牛?

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: CUDA编程模型都改了!英伟达架构师团队撰文详解:Hopper为啥这么牛?
【新智元导读】最近老黄掏出的显卡核弹Hopper H100可谓是风头无两,性能全面碾压老前辈。但除了800亿晶体管,Hopper架构也是完全重新设计的,一起看看架构里面还有啥细节?


在英伟达GTC 2022大会上,老黄更新了服役近两年的安培微架构(Ampere),推出Hopper架构,并抛出一块专为超算设计、包含800亿个晶体管的显卡Hopper H100,比老前辈A100显卡的540亿晶体管还要高出不少。

 

但光看名字和参数还不够,Hopper到底牛在哪?

 

最近英伟达的架构开发师们发布了一篇博客,深入讲解和分析了Hopper架构。文章作者包括英伟达首席GPU架构师Michael Andersch,GPU架构组杰出工程师Greg Palmer和Ronny Krashinsky,英伟达高级技术营销总监Nick Stam,高级开发技术工程师Vishal Mehta等核心开发成员。

 

 

Hopper牛在哪?


Hopper架构的名字来自Grace Hopper女士,她被誉为计算机软件工程第一夫人、编译语言COBOL之母,她是耶鲁大学第一位数学女博士、世界上第三位程序员、全球首个编译器的发明者,也是第一位发现「bug」的人。


 

基于Hopper架构的英伟达Hopper H100张量核心GPU已经是第九代数据中心GPU了,相比上一代安培架构的A100 GPU,Hopper架构明显强悍了很多,不仅晶体管数量有明显提升,制作工艺也从7纳米提升到4纳米,为大规模AI和HPC提供了一个数量级的性能飞跃。

 

 

同时H100继承了A100的主要设计重点,提升了对AI和HPC工作负载的扩展能力,并在架构效率方面进行了大幅改进。

 

 

对于当今的主流人工智能和高性能计算模型,带有InfiniBand互连的H100可提供比A100强30倍的性能。

 

并且新的NVLink Switch System在针对一些大型计算工作负载任务,比如需要在多个GPU加速节点上进行模型并行化时,能够通过互联调整负载,可以再次提高性能。在某些情况下,性能能够在使用InfiniBand的H100基础上再增加两倍。

 

 

可以说H100 GPU专为高性能计算和超大规模AI模型加速而生,AI模型的推理速度少说也能提升10倍。

 

Hopper芯片利用了Arm架构的灵活性,是一个完全重新设计、专为加速计算而设计的CPU和服务器架构。H100能够与英伟达Grace CPU搭配,借助超快英伟达chip-to-chip互联,可以提供高达900GB/s的总带宽,比PCIe Gen5还要快7倍。

 

在TB级数据的高性能计算下,和世界上最快的服务器相比,新设计能够提升10倍性能和30倍的总带宽。

 

 

开发人员总结了一个长长的H100 GPU关键新特性列表。

 

首先H100有一个新的流式多处理器(SM, streaming multiprocessor),性能和效率都有所提升。

 

 

新的第四代张量核心与A100相比,chip-to-chip的性能提升6倍,速度提升主要来自更快的SM,更多的SM数量,以及H100中更高的时钟频率。在每个SM上,与上一代16位浮点选项相比,Tensor Cores在同等数据类型上的MMA(矩阵乘积)计算速率是A100 SM的2倍,使用新的FP8数据类型的速率是A100的4倍。稀疏性1功能利用了深度学习网络中的细粒度结构化稀疏性,使标准张量核心操作的性能提高了一倍。

 

 

新的DPX指令对动态编程算法的加速比A100 GPU高7倍。在基因组学处理的Smith-Waterman算法,以及用于在动态仓库环境中为机器人车队寻找最佳路线的Floyd-Warshall算法上验证后,证实了性能提升。

 

与A100相比,IEEE FP64和FP32的处理率在芯片间快了3倍,这是由于每个SM的clock-for-clock性能快了2倍,加上H100的额外SM数量和更高的时钟。

 

 

新的线程块集群功能能够以大于单个SM上的单个线程块的颗粒度对位置性进行编程控制。扩展了CUDA编程模型,为编程层次增加了一个层次,现在包括线程、线程块、线程块集群和网格。集群使多个线程块可以在多个SM上并发运行,以同步和协作方式获取和交换数据。

 

分布式共享内存允许在多个SM共享内存块上进行SM到SM的直接通信,用于加载、存储和原子学。

 

 

新的异步执行功能包括一个新的张量内存加速器(TMA)单元,可以在全局内存和共享内存之间有效地传输大型数据块。TMA还支持集群中线程块之间的异步拷贝。还有一个新的异步事务屏障,用于做原子数据移动和同步。

 

新的Transformer引擎采用了软件和定制的英伟达Hopper Tensor Core技术的组合,专门用于加速转化器模型的训练和推理。Transformer引擎能够智能管理并动态选择FP8和16位计算,自动处理每一层中FP8和16位之间的重铸和缩放,与上一代A100相比,在大型语言模型上的AI训练速度提升了9倍,AI推理速度提升了30倍。

 

 

HBM3内存子系统比上一代增加了近2倍的带宽。H100 SXM5 GPU是世界上第一个采用HBM3内存的GPU,提供领先于同级别的3TB/秒的内存带宽。

 

50 MB L2 高速缓存架构缓存了大量的模型和数据集,在重复访问时减少了对HBM3的访问。

 

与A100相比,第二代多实例GPU(MIG)技术为每个GPU实例提供了约3倍的计算能力和近2倍的内存带宽。也是首次提供具有MIG级TEE的机密计算能力。支持多达七个独立的GPU实例,每个实例都有专用的NVDEC和NVJPG单元。每个实例都包括自己的一套性能监控器,可与NVIDIA开发人员工具一起使用。

 

 

新的机密计算(Confidential Computing)支持可以保护用户数据,抵御硬件和软件攻击,并在虚拟化和MIG环境中更好地隔离和保护虚拟机(VM)。H100实现了世界上第一个原生机密计算GPU,并以全PCIe线速向CPU扩展了可信执行环境(TEE)。

 

第四代NVLink在all-reduce操作上提供了3倍的带宽,比上一代NVLink增加了50%的通用带宽,多GPU IO的总带宽为900 GB/秒,操作带宽是PCIe第五代的7倍。

 

 

第三代NVSwitch技术包括驻扎在节点内部和外部的交换机,用于连接服务器、集群和数据中心环境中的多个GPU。

 

节点内的每个NVSwitch提供64个第四代NVLink链接端口,以加速多GPU连接。交换机的总吞吐量从上一代的7.2 Tbits/秒增加到13.6 Tbits/秒。新的第三代NVSwitch技术还为多播和NVIDIA SHARP网内还原的集体操作提供了硬件加速。

 

 

新的NVLink Switch系统互连技术和基于第三代NVSwitch技术的新的二级NVLink Switches引入了地址空间隔离和保护,使多达32个节点或256个GPU能够通过NVLink以2:1的锥形树状拓扑连接起来。

 

这些连接的节点能够提供57.6TB/秒的all-to-all带宽,并能够提供惊人的FP8稀疏AI计算的exaFLOP。PCIe Gen 5能够提供128GB/秒的总带宽(每个方向64GB/秒),而第四代PCIe的总带宽为64GB/秒(每个方向32GB/秒)。PCIe Gen5使H100能够与最高性能的x86 CPU和SmartNICs或数据处理单元(DPU)连接。

 

 

更多技术细节可以访问原文查看。总而言之,H100就是更快、更高、更强!(更贵)

参考资料:

https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
176 3
|
23天前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
143 83
|
3月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
114 0
|
22天前
|
机器学习/深度学习 测试技术 定位技术
新扩散模型OmniGen一统图像生成,架构还高度简化、易用
近期,一篇题为“OmniGen: Unified Image Generation”的论文介绍了一种新型扩散模型OmniGen,旨在统一图像生成任务。OmniGen架构简洁,无需额外模块即可处理多种任务,如文本到图像生成、图像编辑等。该模型通过修正流优化,展现出与现有模型相当或更优的性能,尤其在图像编辑和视觉条件生成方面表现突出。OmniGen仅含3.8亿参数,却能有效处理复杂任务,简化工作流程。尽管如此,OmniGen仍存在对文本提示敏感、文本渲染能力有限等问题,未来研究将继续优化其架构与功能。
47 16
|
2月前
|
机器学习/深度学习 自然语言处理 C++
TSMamba:基于Mamba架构的高效时间序列预测基础模型
TSMamba通过其创新的架构设计和训练策略,成功解决了传统时间序列预测模型面临的多个关键问题。
161 4
TSMamba:基于Mamba架构的高效时间序列预测基础模型
|
2月前
|
机器学习/深度学习 编解码 异构计算
4090笔记本0.37秒直出大片!英伟达联手MIT清华祭出Sana架构,速度秒杀FLUX
英伟达、麻省理工学院与清华大学联合发布Sana,一款高效文本到图像生成框架。Sana通过深度压缩自编码器和线性注意力机制,实现快速高分辨率图像生成,生成1024×1024图像仅需不到1秒。此外,Sana采用解码器专用文本编码器增强文本与图像对齐度,大幅提高生成质量和效率。相比现有模型,Sana体积更小、速度更快,适用于多种设备。
35 7
|
2月前
|
网络协议 网络架构
TCP/IP协议架构:四层模型详解
在网络通信的世界里,TCP/IP协议栈是构建现代互联网的基础。本文将深入探讨TCP/IP协议涉及的四层架构,以及每一层的关键功能和作用。
186 5
|
2月前
|
机器学习/深度学习 存储 人工智能
【AI系统】模型演进与经典架构
本文探讨了AI计算模式对AI芯片设计的重要性,通过分析经典模型结构设计与演进、模型量化与压缩等核心内容,揭示了神经网络模型的发展现状及优化方向。文章详细介绍了神经网络的基本组件、主流模型结构、以及模型量化和剪枝技术,强调了这些技术在提高模型效率、降低计算和存储需求方面的关键作用。基于此,提出了AI芯片设计应考虑支持神经网络计算逻辑、高维张量存储与计算、灵活的软件配置接口、不同bit位数的计算单元和存储格式等建议,以适应不断发展的AI技术需求。
43 5
|
3月前
|
机器学习/深度学习 网络架构 计算机视觉
目标检测笔记(一):不同模型的网络架构介绍和代码
这篇文章介绍了ShuffleNetV2网络架构及其代码实现,包括模型结构、代码细节和不同版本的模型。ShuffleNetV2是一个高效的卷积神经网络,适用于深度学习中的目标检测任务。
118 1
目标检测笔记(一):不同模型的网络架构介绍和代码
|
3月前
|
设计模式 人工智能 算法
编程之旅:从代码到架构的感悟
【9月更文挑战第33天】在编程的世界里,代码不仅是实现功能的工具,更是连接思想与现实的桥梁。本文将通过个人的编程经历,分享从编写第一行代码到设计系统架构的旅程,探索编程背后的哲学和技术演变。我们将一起思考,如何在代码的海洋中找到自己的航向,以及在这个过程中如何不断成长和适应变化。

热门文章

最新文章