RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构

简介: RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 RepViT 轻量级的Vision Transformers架构

一、本文介绍

本文记录的是基于RepVit的RT-DETR轻量化改进方法研究RepVit的网络结构借鉴ViT的设计理念,通过分离的token mixechannel mixer减少推理时的计算和内存成本,同时减少扩展比率并增加宽度,降低延迟,并通过加倍通道来弥补参数大幅减少的问题,提高了准确性。本文在替换骨干网络中配置了原论文中的repvit_m0_9repvit_m1_0repvit_m1_1repvit_m1_5repvit_m2_3五种模型,以满足不同的需求。

模型 参数量 计算量 推理速度
rtdetr-l 32.8M 108.0GFLOPs 11.6ms
Improved 23.2M 74.4GFLOPs 11.5ms

专栏目录:RT-DETR改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:RT-DETR改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、RepVit结构详解

2.1 出发点

在计算机视觉领域,设计轻量化模型对于在资源受限的移动设备上实现视觉模型的部署至关重要。近年来,轻量级Vision Transformers(ViTs)在移动设备上表现出优越性能和较低延迟,但ViTs和轻量级Convolutional Neural Networks(CNNs)在块结构、宏观和微观设计上存在显著差异未被充分研究。本研究从ViT视角重新审视轻量级CNNs的高效设计,旨在为移动设备探索更优的模型架构,因此提出了RepViT模型

2.2 原理

2.2.1 借鉴ViT的设计理念

  • 块设计(Block design)
    • 分离token mixer和channel mixer:轻量级ViTs的块结构包含分离的token mixerchannel mixer这一重要设计特征。研究发现ViTs的有效性主要源于其通用的token mixer和channel mixer架构(MetaFormer架构)。在MobileNetV3 - L中,原始块设计使token mixer和channel mixer耦合,通过移动DW卷积可选的挤压 - 激励(SE)层,成功分离两者,并采用结构重新参数化技术增强模型学习,减少了推理时的计算和内存成本,降低了延迟,命名为RepViT块
    • 减少扩展比率并增加宽度:在ViTs中,通道混合器的扩展比率通常较大,消耗大量计算资源。而在RepViT块中,将所有阶段的通道混合器扩展比率设置为2,降低了延迟,并通过在每个阶段加倍通道来弥补参数大幅减少的问题,提高了准确性。

在这里插入图片描述

2.2.2 宏观设计(Macro design)

  • 早期卷积用于stem:ViTs通常使用patchify操作作为stem,容易导致优化性欠佳和对训练配方敏感。而MobileNetV3 - L采用复杂的stem,存在延迟瓶颈且限制了表示能力。研究采用早期卷积方式,即堆叠两个步长为2的3×3卷积作为stem,减少了延迟,提高了准确性。
  • 更深的下采样层:ViTs通过单独的补丁合并层实现空间下采样,有利于增加网络深度和减少信息损失。而MobileNetV3 - L仅通过倒置瓶颈块实现下采样,可能缺乏足够网络深度。研究采用DW卷积和1×1卷积进行空间下采样并调制通道维度,还前置一个RepViT块进一步加深下采样层,并放置一个FFN模块记忆更多潜在信息,提高了准确性,同时降低了延迟。
  • 简单分类器:轻量级ViTs的分类器通常由全局平均池化层和线性层组成,对延迟友好。而MobileNetV3 - L采用复杂分类器,增加了延迟负担。考虑到RepViT块设计后最后阶段有更多通道,研究采用简单分类器替代,虽有一定精度下降,但降低了延迟。
  • 整体阶段比率:调整不同阶段的块数量比例,采用1:1:7:1的阶段比率并增加网络深度,提高了准确性,同时降低了延迟。

    2.2.3 微观设计(Micro design)

  • 内核大小选择:CNNs的性能和延迟受卷积核大小影响。虽然大内核卷积可展示性能增益,但对移动设备不友好。MobileNetV3 - L主要使用3×3卷积,研究在所有模块中优先使用3×3卷积,维持了准确性,同时降低了延迟。
  • 挤压 - 激励(SE)层放置SE层可弥补卷积的局限性,但在MobileNetV3 - L中某些块使用SE层存在问题。研究设计了一种跨块使用SE层的策略,即每个阶段的第1、3、5等块使用SE层,以最小的延迟增加获得最大的精度提升。

在这里插入图片描述

2.3 结构

RepViT模型是一个全新的纯轻量级CNN家族,其结构基于ViT - like MetaFormer结构,完全由重新参数化卷积组成。它具有多个变体,如RepViT - M0.9/M1.0/M1.1/M1.5/M2.3等,不同变体通过每个阶段的通道数量和块数量来区分。

2.4 优势

  1. 性能优越
    • 在ImageNet - 1K上进行图像分类实验时,RepViT在不同模型大小下均达到了最先进的性能。

例如RepViT - M1.0`在iPhone 12上以1.0 ms的延迟实现了超过80%的top - 1准确率,这是轻量级模型首次达到该水平。在不使用知识蒸馏的情况下,也能显著优于其他竞争模型。

  1. 延迟较低
    • RepViT在各种视觉任务中展现出良好的延迟性能。

例如在对象检测和实例分割任务中,在相似模型大小下,RepViT - M1.1相比EfficientFormer - L1 backbone具有更小的延迟;在语义分割任务中,RepViT - M1.5相比EfficientFormerV2 - S2具有近50%的延迟降低,同时具有更好的性能。

  1. 适用于移动设备
    • RepViT的设计充分考虑了移动设备的资源受限特性,通过借鉴ViT的高效架构设计,对轻量级CNN进行优化,使其在移动设备上具有良好的性能和延迟表现,为移动设备上的视觉任务提供了更优的模型选择。

论文:https://arxiv.org/pdf/2307.09283
源码:https://github.com/THU-MIG/RepViT

三、实现代码及RT-DETR修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/144208858

目录
相关文章
|
2月前
|
网络协议 算法 Java
基于Reactor模型的高性能网络库之Tcpserver组件-上层调度器
TcpServer 是一个用于管理 TCP 连接的类,包含成员变量如事件循环(EventLoop)、连接池(ConnectionMap)和回调函数等。其主要功能包括监听新连接、设置线程池、启动服务器及处理连接事件。通过 Acceptor 接收新连接,并使用轮询算法将连接分配给子事件循环(subloop)进行读写操作。调用链从 start() 开始,经由线程池启动和 Acceptor 监听,最终由 TcpConnection 管理具体连接的事件处理。
53 2
|
2月前
基于Reactor模型的高性能网络库之Tcpconnection组件
TcpConnection 由 subLoop 管理 connfd,负责处理具体连接。它封装了连接套接字,通过 Channel 监听可读、可写、关闭、错误等
62 1
|
2月前
|
JSON 监控 网络协议
干货分享“对接的 API 总是不稳定,网络分层模型” 看电商 API 故障的本质
本文从 OSI 七层网络模型出发,深入剖析电商 API 不稳定的根本原因,涵盖物理层到应用层的典型故障与解决方案,结合阿里、京东等大厂架构,详解如何构建高稳定性的电商 API 通信体系。
|
12天前
|
算法 安全 网络安全
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
【多智能体系统】遭受DoS攻击的网络物理多智能体系统的弹性模型预测控制MPC研究(Simulink仿真实现)
|
9月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
10月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
229 3
|
10月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
5月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
311 12
|
9月前
|
Java 开发者 微服务
从单体到微服务:如何借助 Spring Cloud 实现架构转型
**Spring Cloud** 是一套基于 Spring 框架的**微服务架构解决方案**,它提供了一系列的工具和组件,帮助开发者快速构建分布式系统,尤其是微服务架构。
604 70
从单体到微服务:如何借助 Spring Cloud 实现架构转型
|
7月前
|
传感器 监控 安全
智慧工地云平台的技术架构解析:微服务+Spring Cloud如何支撑海量数据?
慧工地解决方案依托AI、物联网和BIM技术,实现对施工现场的全方位、立体化管理。通过规范施工、减少安全隐患、节省人力、降低运营成本,提升工地管理的安全性、效率和精益度。该方案适用于大型建筑、基础设施、房地产开发等场景,具备微服务架构、大数据与AI分析、物联网设备联网、多端协同等创新点,推动建筑行业向数字化、智能化转型。未来将融合5G、区块链等技术,助力智慧城市建设。
311 0

热门文章

最新文章