【图像识别】基于CNN 实现水果分类附matlab代码

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
简介: 【图像识别】基于CNN 实现水果分类附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

针对现有基于卷积神经网络的水果图像分类算法均使用池化层进行降维处理会丢失部分特征,导致分类精度有待提高的问题,提出FC-CNN(Fruit Classification Convolutional Neural Network)水果图像分类算法.该算法基于深度卷积神经网络思想,设计了一种由二维卷积层,批量规范化层和激活函数组成的网络结构,利用Sofmax loss和L2正则化进行损失函数设计.算法使用卷积加步长替代池化层,让网络具有自主学习下采样能力,使用批量规范化层用于解决网络过拟合问题.采用Fruits-360数据集进行测试,实验表明,FC-CNN可以识别出48种水果,准确率可达到99.63%.与现有的深度学习水果图像分类算法相比,FC-CNN的识别准确率更高,识别种类更多.

⛄ 部分代码

[file,path] = uigetfile('*.png;*.jpg;*.jpeg;*.bmp');

% Görüntüyü yükleme ve ön işleme

selectedfile = fullfile(path,file);

I=imread(selectedfile);

I=imresize(I,[100 100]);


tic

[a,b]=classify(net,I)

sure=toc

[~,idx] = sort(b,'descend');

idx = idx(5:-1:1);

classNamesTop = net.Layers(end).ClassNames(idx);

scoresTop = b(idx);

barh(scoresTop)

xlim([0 1])

title('Top 5 Predictions')

xlabel('Probability')

yticklabels(classNamesTop)

⛄ 运行结果

⛄ 参考文献

[1]简钦, 张雨墨, 简献忠. FC-CNN:基于卷积神经网络的水果图像分类算法[J]. 农业装备与车辆工程, 2021, 059(001):67-71.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
24天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的USB摄像头实时视频采集与水果识别matlab仿真
本项目展示了使用MATLAB 2022a和USB摄像头识别显示器上不同水果图片的算法。通过预览图可见其准确识别效果,完整程序无水印。项目采用GoogleNet(Inception-v1)深度卷积神经网络,利用Inception模块捕捉多尺度特征。代码含详细中文注释及操作视频,便于理解和使用。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于NSCT非采样轮廓波变换和CNN网络人脸识别matlab仿真
本项目展示了一种结合非采样轮廓波变换(NSCT)与卷积神经网络(CNN)的人脸识别系统。通过NSCT提取多尺度、多方向特征,并利用CNN的强大分类能力实现高效识别。项目包括ORL人脸库的训练结果对比,提供Matlab 2022a版本下的完整代码及详细中文注释,另有操作步骤视频指导。
|
4月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络的步态识别matlab仿真,数据库采用CASIA库
**核心程序**: 完整版代码附中文注释,确保清晰理解。 **理论概述**: 利用CNN从视频中学习步态时空特征。 **系统框架**: 1. 数据预处理 2. CNN特征提取 3. 构建CNN模型 4. 训练与优化 5. 识别测试 **CNN原理**: 卷积、池化、激活功能强大特征学习。 **CASIA数据库**: 高质量数据集促进模型鲁棒性。 **结论**: CNN驱动的步态识别展现高精度,潜力巨大,适用于监控和安全领域。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
2月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目展示了一种结合灰狼优化(GWO)与深度学习模型(CNN和LSTM)的时间序列预测方法。GWO算法高效优化模型超参数,提升预测精度。CNN提取局部特征,LSTM处理长序列依赖,共同实现准确的未来数值预测。项目包括MATLAB 2022a环境下运行的完整代码及视频教程,代码内含详细中文注释,便于理解和操作。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的CNN-GRU的时间序列回归预测matlab仿真
时间序列预测关键在于有效利用历史数据预测未来值。本研究采用卷积神经网络(CNN)提取时间序列特征,结合GRU处理序列依赖性,并用灰狼优化(GWO)精调模型参数。CNN通过卷积与池化层提取数据特征,GRU通过更新门和重置门机制有效管理长期依赖。GWO模拟灰狼社群行为进行全局优化,提升预测准确性。本项目使用MATLAB 2022a实现,含详细中文注释及操作视频教程。
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-GRU的时间序列回归预测matlab仿真
本项目运用鲸鱼优化算法(WOA)优化卷积神经网络(CNN)与GRU网络的超参数,以提升时间序列预测精度。在MATLAB 2022a环境下,通过CNN提取时间序列的局部特征,而GRU则记忆长期依赖。WOA确保模型参数最优配置。代码附有中文注释及操作视频,便于理解和应用。效果预览无水印,直观展示预测准确性。