基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真

简介: 本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。

1.算法运行效果图预览
(完整程序运行后无水印)

优化前:

1.jpeg
2.jpeg
3.jpeg
4.jpeg

优化后:
5.jpeg
6.jpeg
7.jpeg
8.jpeg
9.jpeg
10.jpeg

2.算法运行软件版本
MATLAB2022a

3.部分核心程序
(完整版代码包含详细中文注释和操作步骤视频)

```% 训练网络
net = trainNetwork(Pbk_train, Tbk_train, layers, options);

% 对训练集和测试集进行预测
y_pre1 = predict(net, Pbk_train);
y_pre2 = predict(net, Pbk_test);

% 将预测结果转换为类别索引
for i = 1:length(y_pre1)
[~, II] = max(y_pre1(i, :));
ylab1(1, i) = II;
end
for i = 1:length(y_pre2)
[~, II] = max(y_pre2(i, :));
ylab2(1, i) = II;
end

% 计算预测准确率
Acc1 = sum((ylab1 == T_train)) / Num1;
Acc2 = sum((ylab2 == T_test)) / Num2;

% 绘制训练集预测结果
figure
plot(1:Num1, T_train, 'r-s') % 真实值
hold on
plot(1:Num1, ylab1, 'b-o') % 预测值
legend('真实值', '预测值')
title(['训练集预测准确率=', num2str(Acc1)])

% 绘制测试集预测结果
figure
plot(1:Num2, T_test, 'r-s') % 真实值
hold on
plot(1:Num2, ylab2, 'b-o') % 预测值
legend('真实值', '预测值')
title(['测试集预测准确率=', num2str(Acc2)])

% 绘制混淆矩阵
figure
subplot(121);
confusionchart(T_train, ylab1);
title('训练集混淆矩阵');

subplot(122);
confusionchart(T_test, ylab2);
title('测试集混淆矩阵');

% 保存结果
save R1.mat Num1 T_train ylab1 T_test ylab2
175

```

4.算法理论概述
贝叶斯优化是一种全局优化方法,特别适用于黑盒函数优化问题,即目标函数的形式未知或者很难计算梯度的情况。贝叶斯优化通过构建一个代理模型(如高斯过程)来近似目标函数,并利用该代理模型来指导搜索过程。

4.1卷积神经网络(CNN)
在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:
image.png

   CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

4.2 GRU网络
GRU(Gated Recurrent Unit)是一种先进的循环神经网络(RNN)变体,专门设计用于处理序列数据,如文本、语音、时间序列等。GRU旨在解决传统RNN在处理长序列时可能出现的梯度消失或梯度爆炸问题,并简化LSTM(Long Short-Term Memory)网络的结构,同时保持其捕获长期依赖关系的能力。

  GRU包含一个核心循环单元,该单元在每个时间步t处理输入数据xt并更新隐藏状态ht。其核心创新在于引入了两个门控机制:更新门(Update Gate)和重置门(Reset Gate)。

12.png
13.png

相关文章
|
4月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
281 0
|
4月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
4月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
4月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
457 0
|
4月前
|
数据采集 分布式计算 并行计算
mRMR算法实现特征选择-MATLAB
mRMR算法实现特征选择-MATLAB
309 2
|
5月前
|
传感器 机器学习/深度学习 编解码
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
MATLAB|主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性
292 3
|
5月前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
214 6
|
4月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
235 8
|
4月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
266 8
|
5月前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
328 14

热门文章

最新文章