超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)

本文涉及的产品
视觉智能开放平台,图像通用资源包5000点
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频通用资源包5000点
简介: 超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)

4 MicroNet架构


文中总共描述了4种MicroNet模型的结构,FLOPs在6M到44M之间。它们由3种类型的Block组成,它们以不同的方式结合了Micro-Factorized pointwise和depthwise卷积。它们都使用dynamic ShiftMax作为激活函数。

image.png

4.1、Micro-Block-A

Micro-Block-A使用了微分解点态和深度卷积的精简组合。它在分辨率较高的低电平上是有效的。请注意,信道的数量是通过深度上的微分解卷积来扩展的,而通过组自适应卷积来压缩的。

4.2、Micro-Block-B

Micro-Block-B用于连接MicroBlock-A和Micro-Block-C。与Micro-Block-A不同的是,它使用了完全Micro-Factorized pointwise卷积,其中包括两个Group自适应卷积。前者压缩了通道数量,而后者则增加了通道数量。

4.3、Micro-Block-C

Micro-Block-C使用常规组合,将深度上的Micro-Factorized pointwise卷积连接起来。它被用于更深处的位置,因为它在通道融合(pointwise)上比lite组合花费更多的计算。当维度匹配时使用跳接。

每个微块有四个超参数:核大小k、输出通道数C、Micro-Factorized pointwise瓶颈处的缩减比R、2个Group自适应卷积的Group数对(G1,G2)。

4.4、Stem Layer

作者重新设计了Stem层,以满足低FLOPs的约束。它包括一个的卷积和一个的群卷积,然后是一个ReLU。第2次卷积将通道的数量增加了R倍。这大大节省了计算成本。


5 实验


5.1、ImageNet分类结果

下表2比较了4种不同的计算代价下最先进的ImgageNet分类。在这4个结果中MicroNet性能优于以前的工作。

5.2、激活函数实验

5.3、Pixel-Level分类

5.3.1 COCO keypoint detection

5.3.2 Semantic segmentation

参考

[1] MicroNet: Towards Image Recognition with Extremely Low FLOPs

相关文章
|
机器学习/深度学习 编解码 算法
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
419 0
|
机器学习/深度学习 编解码 计算机视觉
ICCV2021 | MicroNet:以极低的 FLOPs 改进图像识别
这篇论文旨在以极低的计算成本解决性能大幅下降的问题。提出了微分解卷积,将卷积矩阵分解为低秩矩阵,将稀疏连接整合到卷积中。提出了一个新的动态激活函数-- Dynamic Shift Max,通过最大化输入特征图与其循环通道移位之间的多个动态融合来改善非线性。
ICCV2021 | MicroNet:以极低的 FLOPs 改进图像识别
|
7天前
|
机器学习/深度学习 人工智能 文字识别
中药材图像识别数据集(100类,9200张)|适用于YOLO系列深度学习分类检测任务
本数据集包含9200张中药材图像,覆盖100类常见中药材,适用于YOLO系列及主流深度学习模型的图像分类与目标检测任务。数据已划分为训练集(8000张)与验证集(1200张),采用标准文件夹结构和简体中文命名,适配PyTorch、TensorFlow等框架,可用于中药识别系统开发、医学辅助诊断、移动端图像识别App研发及AI科研训练,具备较强的实用性与拓展性。
105 1
|
4月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
300 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
5月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
342 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
7月前
|
机器学习/深度学习 人工智能 编解码
深度学习在图像识别中的革命性进展###
近年来,深度学习技术在图像识别领域取得了显著成就,极大地推动了人工智能的发展。本文探讨了深度学习模型如何通过模拟人类视觉系统来提高图像识别的准确性和效率,并分析了几种主流的深度学习架构及其在实际应用中的表现。此外,还讨论了当前面临的挑战及未来可能的发展方向。 ###
196 61
|
7月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
412 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7月前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
231 19
|
7月前
|
机器学习/深度学习 存储 自动驾驶
探索深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、当前的成就以及面临的主要挑战。通过具体案例分析,揭示了深度学习模型如何从复杂的图像数据中学习到有效的特征表示,以及这些技术进步如何推动计算机视觉领域的发展。同时,文章也讨论了深度学习模型训练过程中的数据依赖性、过拟合问题、计算资源需求等挑战,并提出了未来研究的可能方向。
150 30
|
7月前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
253 7