超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
简介: 超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(二)

4 MicroNet架构


文中总共描述了4种MicroNet模型的结构,FLOPs在6M到44M之间。它们由3种类型的Block组成,它们以不同的方式结合了Micro-Factorized pointwise和depthwise卷积。它们都使用dynamic ShiftMax作为激活函数。

image.png

4.1、Micro-Block-A

Micro-Block-A使用了微分解点态和深度卷积的精简组合。它在分辨率较高的低电平上是有效的。请注意,信道的数量是通过深度上的微分解卷积来扩展的,而通过组自适应卷积来压缩的。

4.2、Micro-Block-B

Micro-Block-B用于连接MicroBlock-A和Micro-Block-C。与Micro-Block-A不同的是,它使用了完全Micro-Factorized pointwise卷积,其中包括两个Group自适应卷积。前者压缩了通道数量,而后者则增加了通道数量。

4.3、Micro-Block-C

Micro-Block-C使用常规组合,将深度上的Micro-Factorized pointwise卷积连接起来。它被用于更深处的位置,因为它在通道融合(pointwise)上比lite组合花费更多的计算。当维度匹配时使用跳接。

每个微块有四个超参数:核大小k、输出通道数C、Micro-Factorized pointwise瓶颈处的缩减比R、2个Group自适应卷积的Group数对(G1,G2)。

4.4、Stem Layer

作者重新设计了Stem层,以满足低FLOPs的约束。它包括一个的卷积和一个的群卷积,然后是一个ReLU。第2次卷积将通道的数量增加了R倍。这大大节省了计算成本。


5 实验


5.1、ImageNet分类结果

下表2比较了4种不同的计算代价下最先进的ImgageNet分类。在这4个结果中MicroNet性能优于以前的工作。

5.2、激活函数实验

5.3、Pixel-Level分类

5.3.1 COCO keypoint detection

5.3.2 Semantic segmentation

参考

[1] MicroNet: Towards Image Recognition with Extremely Low FLOPs

相关文章
|
机器学习/深度学习 编解码 算法
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
超越GhostNet!吊打MobileNetV3!MicroNet通过极低FLOPs实现图像识别(文末获取论文)(一)
264 0
|
机器学习/深度学习 编解码 计算机视觉
ICCV2021 | MicroNet:以极低的 FLOPs 改进图像识别
这篇论文旨在以极低的计算成本解决性能大幅下降的问题。提出了微分解卷积,将卷积矩阵分解为低秩矩阵,将稀疏连接整合到卷积中。提出了一个新的动态激活函数-- Dynamic Shift Max,通过最大化输入特征图与其循环通道移位之间的多个动态融合来改善非线性。
ICCV2021 | MicroNet:以极低的 FLOPs 改进图像识别
|
5天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
32 9
|
4天前
|
机器学习/深度学习 人工智能 计算机视觉
探索深度学习在图像识别中的突破与挑战##
本文深入探讨了深度学习技术在图像识别领域的最新进展,重点分析了卷积神经网络(CNN)作为核心技术的演变历程,从LeNet到AlexNet,再到VGG、ResNet等先进架构的创新点。不同于传统摘要形式,本文摘要旨在通过一系列关键里程碑事件,勾勒出深度学习推动图像识别技术飞跃的轨迹,同时指出当前面临的主要挑战,如模型泛化能力、计算资源依赖性及数据偏见问题,为读者提供一个宏观且具体的发展脉络概览。 ##
24 7
|
2天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
2天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
4天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
5天前
|
机器学习/深度学习 算法 数据处理
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了其背后的原理、主要算法以及在实际场景中的应用效果。同时,文章也指出了当前深度学习在图像识别领域面临的挑战,包括数据不平衡、模型泛化能力、计算资源需求等问题,并展望了未来的研究方向。
|
1天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
3天前
|
机器学习/深度学习 算法 自动驾驶
深度学习中的图像识别技术
【10月更文挑战第37天】本文将深入探讨深度学习在图像识别领域的应用,通过解析神经网络模型的构建、训练和优化过程,揭示深度学习如何赋能计算机视觉。文章还将展示代码示例,帮助读者理解并实现自己的图像识别项目。