智能语音交互

首页 标签 智能语音交互
# 智能语音交互 #
关注
2660内容
GPU训练的快速大规模分布式扩展-GPU多机多卡Machine Learning Middleware
我们设计了GPU多机多卡middleware,使得单机版机器学习程序可以通过插入middleware较快的实现基于ASGD或MA的多机多卡训练,此前各自基于open source工具所做的独有修改都可以得以充分保留。
揭秘阿里人工智能实验室首款智能音箱——天猫精灵X1
7月5日下午,阿里人工智能实验室在北京正式发布了旗下首款智能设备——天猫精灵X1,据介绍,这款产品采用了阿里人工智能实验室自主研发的中文语义理解引擎,内置第一代中文人机交流系统AliGenie,并且依托阿里云的机器学习技术实现智能家居控制、语音购物、手机充值、音乐播放等功能。
《西部世界》何日来袭?自然语言理解是智能人机对话的关键瓶颈
人工智能如何具备理解用户和懂用户的能力?如何具备与用户自由对话的能力?如何实现主动和渐进式学习的能力……针对这一系列问题,云栖社区采访了阿里云iDST资深算法专家孙健(千诀),采访从人机对话交互中的自然语言理解和人机对话方向展开
人机交互新进展:LFR-DFSMN语音识别声学模型介绍
语音识别技术是人机交互技术的重要组成部分,而语音识别中的声学模型是语音识别技术中的核心所在,堪称重中之重。阿里巴巴iDST智能语音交互团队最新的LFR-DFSMN模型相对于之前的LFR-LCBLSTM模型可以达到训练加速3倍、识别加速2倍、识别错误率降低20%和最终模型大小压缩50%的效果,实现了语音识别的迭代速度、识别成本、服务质量的全面提升。
语音识别(ASR)基础介绍第二篇——万金油特征MFCC
上一章提到了整个发声与拾音及存储的原理。但是在了解ASR的过程中,发现基本上遇到的资料都避不开MFCC特征。   整个ASR的处理流程大致可以分为下图: 左侧是经典的处理流程,右侧是近期流行的流程。发生的变化是,将语言模型以下的部分变成端到端的了。 我们将语言模型以下的部分统一看成是声学模型就好。  而MFCC主要用在左侧的处理流程中,即“特征处
阿里巴巴高杰:3年风雨路,阿里巴巴自然语音交互的探索与经验教训
随着语音交互、自然语言处理、多模态等技术的发展,人机交互方式已经变得越来越简单,目前人机交互已经成为行业最热的研究方向之一。那么,未来人机交互的发展趋势什么呢?阿里巴巴智能语音交互专家高杰在《云栖大讲堂第三期|未来人机交互技术沙龙》上为大家分享了在阿里巴巴智能个人助理构建过程中所积累的经验和教训。
专访鄢志杰:地铁进入语音购票时代,深度解读下一代人机语音交互技术
阿里巴巴达摩院携手上海地铁开展了地铁语音售票概念机研制,通过完全自然的语音交互,实现了乘客指定站点购票、模糊地名查询购票等操作,为市民提供智能、高效的购票服务。
免费试用