2017 CIKM机器学习大赛分析与总结
1 前言与背景
为提升对前沿算法技术的研究和理解,去年以个人参赛的方式参加了CIKM 国际数据挖掘大赛AnalytiCup,尝试在7月-8月的一个月时间内,利用业余时间,独立搭建了一套简单的自然语言学习框架,最终在与169支队伍竞技中获得第16名的成绩。
这次比赛是我个人的第一次简单尝试,由于业务较紧,年前没有时间写下来,现在回过头来总结
一文助你解决90%的自然语言处理问题(附代码)
自然语言处理(NLP)与计算机视觉(CV)一样,是目前人工智能领域里最为重要的两个方向。如何让机器学习方法从文字中理解人类语言内含的思想?本文中,来自 Insight AI 的 Emmanuel Ameisen 将为我们简述绝大多数任务上我们需要遵循的思路。
数据驱动的多策略聊天引擎
1. 聊天引擎做什么
聊天引擎是一款模拟人类对话或聊天的陪伴产品。接受用户的自然语言输入,返回可解释、承上启下、顺畅的自然语言句子。与问答引擎、专家系统等不同,聊天引擎重点在“侃”,不太关注如何解决用户的实际问题或者执行任务,而是关注如何能与用户进行天南地北的聊天,涉及的话题会很广,但
采样方法(一)
最近开始拾起来看一些NLP相关的东西,特别是深度学习在NLP上的应用,发现采样方法在很多模型中应用得很多,因为训练的时候如果预测目标是一个词,直接的softmax计算量会根据单词数量的增长而增长。恰好想到最开始深度学习在DBN的时候采样也发挥了关键的作用,而自己对采样相关的方法了解不算太多,所以去学习记录一下,经典的统计的方法确实巧妙,看起来非常有收获。