PyTorch

首页 标签 PyTorch
# PyTorch #
关注
4741内容
SE 注意力模块 原理分析与代码实现
本文介绍SE注意力模块,它是在SENet中提出的,SENet是ImageNet 2017的冠军模型;SE模块常常被用于CV模型中,能较有效提取模型精度,所以给大家介绍一下它的原理,设计思路,代码实现,如何应用在模型中。
|
3月前
|
Pytorch学习笔记(二):nn.Conv2d()函数详解
这篇文章是关于PyTorch中nn.Conv2d函数的详解,包括其函数语法、参数解释、具体代码示例以及与其他维度卷积函数的区别。
|
6月前
| |
LLM推理引擎怎么选?TensorRT vs vLLM vs LMDeploy vs MLC-LLM
有很多个框架和包可以优化LLM推理和服务,所以在本文中我将整理一些常用的推理引擎并进行比较。
性能调优指南:针对 DataLoader 的高级配置与优化
【8月更文第29天】在深度学习项目中,数据加载和预处理通常是瓶颈之一,特别是在处理大规模数据集时。PyTorch 的 `DataLoader` 提供了丰富的功能来加速这一过程,但默认设置往往不能满足所有场景下的最优性能。本文将介绍如何对 `DataLoader` 进行高级配置和优化,以提高数据加载速度,从而加快整体训练流程。
绕不开的模型部署?不怕,我们手把手教你学会!
在软件工程中,部署指把开发完毕的软件投入使用的过程,包括环境配置、软件安装等步骤。类似地,对于深度学习模型来说,模型部署指让训练好的模型在特定环境中运行的过程。相比于软件部署,模型部署会面临更多的难题
|
8月前
|
YOLOv5性能评估指标->mAP、Precision、Recall、FPS、Confienc (讲解论文关注的主要指标)
YOLOv5性能评估指标->mAP、Precision、Recall、FPS、Confienc (讲解论文关注的主要指标)
PyTorch 中的动态图与静态图:理解它们的区别及其应用场景
【8月更文第29天】深度学习框架中的计算图是构建和训练神经网络的基础。PyTorch 支持两种类型的计算图:动态图和静态图。本文旨在阐述这两种计算图的区别、各自的优缺点以及它们在不同场景下的应用。
免费试用