85个国外优秀的响应式网页设计作品范例【系列一】
响应式网页设计是时下网页设计领域最热门的话题之一,该概念由著名网页设计师 Ethan Marcotte 在2010年5月份提出(详见:Responsive Web Design),其目标是要让设计的网站能够响应用户的行为,根据不同终端设备自动调整尺寸。
带你读《无人机网络与通信》之一:无人机系统概述
本书针对无人机系统两个关键问题—通信组网和管控体系做了比较全面和深入的描述和探讨,特别是以大量笔墨分析了现有无线通信解决方案,对比了不同通信协议,得出了很有价值的研究结论。无人机的跨越式发展将涉及公共安全管理的问题,构建管控体系是当务之急,分级管理以及制定相应的适航标准是一件大事情,本书对此也进行了系统的、建设性的讨论。未来,高档无人机和无人机集群将对环境具有更强的感知能力和自适应能力,还有对任务的自规划和学习、调整能力,本书讨论的内容将为它们的发明、部署和监督提供宝贵的信息。
在Dify on DMS上搭建专属版Deep Research Agent
Deep Research Agent 不只是为了让你工作快一点那么简单。它更像一场知识工作的革命,彻底把我们从没完没了的“信息搬运”和“大海捞针”中解放出来。想想看,当那些繁琐的、重复性的搜集和整理工作都交给AI后,我们可以把宝贵的时间和脑力,真正用在刀刃上:去提出更一针见血的问题,去构思更有远见的战略,或者干脆去创造一个前所未有的新东西。本文将教你如何在Dify on DMS上,构建企业专属版Deep Research Agent。
智能体平台哪家值得选?盘点国内外12家AI Agent平台技术特色
智能体平台正引领人机协作新潮流,将“智能”交给机器,让“平台”服务于人。2024年被Gartner定义为“AgenticAI元年”,预示未来企业交互将由智能体主导。面对百余平台,可从三条赛道入手:通用大模型、RPA升级派与垂直场景定制。不同需求对应不同方案,选对平台,才能让AI真正助力工作。
【强化学习】强化学习的概述及应用,附带代码示例
强化学习(Reinforcement Learning, RL)是机器学习中的一种重要范式,它通过让智能体(agent)在环境中采取行动并根据所获得的奖励(reward)来学习最优的策略(policy)。简而言之,强化学习的目标是让智能体学会在特定环境下做出决策,以最大化累积奖励。这种学习方式模拟了生物体如何在环境给予的正反馈(奖励)和负反馈(惩罚)中学习行为的过程。