语音技术

首页 标签 语音技术
# 语音技术 #
关注
6635内容
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
2月前
| |
阿里云百炼大模型收费说明:模型推理、模型训练和模型部署费用整理
阿里云百炼平台开通免费,且每模型享100万Token免费额度。费用产生于模型推理、训练(调优)和部署,超出免费额度后按量计费。推理按输入/输出Token阶梯计价,训练按数据量和循环次数计费,部署支持按时长或调用量两种模式。
Dolphin:40语种+22方言!清华联合海天瑞声推出的语音识别大模型,识别精度超Whisper两代
Dolphin是清华大学与海天瑞声联合研发的语音识别大模型,支持40种东方语言和22种中文方言,采用CTC-Attention混合架构,词错率显著低于同类模型。
阿里云百炼产品月报【2025年10月】
通义千问本月重磅升级:发布9款Qwen3-VL多模态模型,支持视频理解、2D/3D定位;MCP生态新增17项服务;推出电商AI生图模板,助力商家降本增效。
3D-Speaker:阿里通义开源的多模态说话人识别项目,支持说话人识别、语种识别、多模态识别、说话人重叠检测和日志记录
3D-Speaker是阿里巴巴通义实验室推出的多模态说话人识别开源项目,结合声学、语义和视觉信息,提供高精度的说话人识别和语种识别功能。项目包含工业级模型、训练和推理代码,以及大规模多设备、多距离、多方言的数据集,适用于多种应用场景。
|
12月前
|
手把手带你搭建一个语音对话机器人,5分钟定制个人AI小助手(新手入门篇)
本文介绍了如何从零开始搭建一个语音对话机器人,涵盖自动语音识别(ASR)、自然语言处理(NLP)和文本到语音合成(TTS)三大核心模块。通过使用开源工具如FunASR、LLaMA3-8B和ChatTTS,以及FastAPI和Gradio等技术,详细指导读者轻松实现个人AI小助手的构建,适合技术新手快速上手。
从k折到自助法:常用交叉验证方法的优缺点
为了评估和改进机器学习(ML)算法的可靠性和泛化能力,交叉验证已被广泛采用[1]。交叉验证是一种在有限数据集上评估和比较不同模型性能的方法,其通过分割数据集为训练集和测试集以验证模型的性能。通过使用交叉验证,研究人员可以避免对单一实验的依赖,因此可以更好地评估模型的泛化能力。
免费试用