超越问答:深入理解并构建自主决策的AI智能体(Agent)
              如果说RAG让LLM学会了“开卷考试”,那么AI智能体(Agent)则赋予了LLM“手和脚”,使其能够思考、规划并与真实世界互动。本文将深入剖析Agent的核心架构,讲解ReAct等关键工作机制,并带你一步步构建一个能够调用外部工具(API)的自定义Agent,开启LLM自主解决复杂任务的新篇章。
              
             
            
              
              从零到一构建你的第一个检索增强生成应用
              本文将带你深入了解检索增强生成(RAG)技术的核心思想,解决大型语言模型(LLM)固有的知识局限和“幻觉”问题。我们将一步步拆解RAG的工作流程,从文档处理到向量检索,并提供一份基于Python的简易代码实现,助你快速上手,构建你的第一个RAG应用。
              
             
            
              
              一人挑战一支研发团队,3步搞定全栈开发
              本文是 Qwen3-Coder 挑战赛教程第四期,我将带你完整走通一个真实项目案例:从零搭建一个“AI 舞蹈生成器”网站——上传一张人物照片,点击“立即生成”,即可获得一段该人物跳舞的动态视频。
整个过程仅需三步,无需前端、后端或模型部署经验,真正实现“说话即开发”。
              
             
            
              
              开发更可控,部署更便捷:AgentScope 迈入1.0时代
              AgentScope 1.0 是通义实验室推出的开源多智能体开发框架,旨在打造稳定、安全、开箱即用的智能体生产级解决方案。通过“核心框架+运行时+可视化工具”三层架构,支持智能体的构建、部署、监控全生命周期管理,具备实时干预、高效工具调用与智能上下文管理能力,助力开发者实现从“能跑”到“可控、可落地”的跨越。
              
             
            
              
              先SFT后RL但是效果不佳?你可能没用好“离线专家数据”!
              通义实验室Trinity-RFT团队提出CHORD框架,通过动态融合SFT与RL,解决大模型训练中“越学越差”“顾此失彼”等问题。该框架引入细粒度Token级权重与软过渡机制,实现从模仿到超越的高效学习,在数学推理与通用任务上均显著提升性能,相关代码已开源。
              
             
            
              
              通义Qwen3-Max:大就是好
              通义千问Qwen3-Max正式发布,参数超1T,训练稳定高效,在代码、推理、多语言等任务中表现卓越。预览版已登顶LMArena榜单前三,支持阿里云百炼API调用与Qwen Chat体验,敬请试用。
              
             
            
            
              
              LLM 内存需求计算方式
              GPU上大语言模型的内存主要由模型权重和KV缓存构成。70亿参数模型以16位精度加载时,权重占约14GB;KV缓存则随批大小和序列长度线性增长,显著影响显存使用,限制推理吞吐与长上下文处理。
              
             
            
            
              
              技术人的知识输出利器:一套高质量知乎回答生成指令模板
              本文提供一套系统化知乎高赞回答生成模板,结合AI工具(如DeepSeek、通义千问),助力技术人高效输出高质量内容。涵盖结构框架、质量检查、实战示例与合规建议,提升表达清晰度与内容价值,适用于经验分享、技术科普等多种场景,实现知识输出的标准化与高效化。