AscendC从入门到精通系列(二)基于Kernel直调开发AscendC算子
本文介绍了AscendC算子的开发流程,包括核函数开发、算子类定义及其实现、核函数的CPU和NPU侧运行验证。通过具体示例`add_custom.cpp`,详细展示了如何使用Ascend C完成算子核函数的定义、初始化、数据搬运和计算过程,并提供了完整的CPU和NPU侧调用程序代码,帮助开发者理解和实践AscendC算子的开发。
如何使用Ascend的ATB加速库?
ATB加速库专为Transformer模型优化设计,基于华为Ascend AI处理器,提升训练和推理效率。本文档详细介绍了如何实现一个ATB算子,涵盖基础Operation、插件机制和Graph Frame三种方式,从环境准备、算子创建、资源管理到最终执行,提供了完整的代码示例和步骤指南,帮助开发者快速掌握ATB算子的开发流程。
Ascend Extension for PyTorch是个what?
Ascend Extension for PyTorch 是针对华为昇腾处理器的PyTorch框架适配插件,旨在让PyTorch开发者能充分利用昇腾AI处理器的强大计算能力。此扩展通过最小化对原生PyTorch的改动,实现了对昇腾NPU的支持,包括动态图特性、自动微分等功能的完整继承,并提供了与原生PyTorch一致的使用体验。项目详情及源码可在昇腾社区获取。
Ascend Extension for PyTorch的源码解析
本文介绍了Ascend对PyTorch代码的适配过程,包括源码下载、编译步骤及常见问题,详细解析了torch-npu编译后的文件结构和三种实现昇腾NPU算子调用的方式:通过torch的register方式、定义算子方式和API重定向映射方式。这对于开发者理解和使用Ascend平台上的PyTorch具有重要指导意义。
“芯片围城”下国产AI要放缓?答案或截然相反
12月2日,美国对华实施新一轮出口限制,将140余家中国企业列入贸易限制清单。对此,中国多个行业协会呼吁国内企业谨慎选择美国芯片。尽管受限企业表示影响有限,但此事件引发了关于AI领域芯片供应的担忧。华为云推出的昇腾AI云服务,提供全栈自主的算力解决方案,包括大规模算力集群、AI框架等,旨在应对AI算力需求,确保算力供给的稳定性和安全性,助力中国AI产业持续发展。
【AI系统】内存分配算法
本文探讨了AI编译器前端优化中的内存分配问题,涵盖模型与硬件内存的发展、内存划分及其优化算法。文章首先分析了神经网络模型对NPU内存需求的增长趋势,随后详细介绍了静态与动态内存的概念及其实现方式,最后重点讨论了几种节省内存的算法,如空间换内存、计算换内存、模型压缩和内存复用等,旨在提高内存使用效率,减少碎片化,提升模型训练和推理的性能。
智谱开源端侧大语言和多模态模型GLM-Edge系列!
GLM-Edge系列模型是由智谱开源,专为端侧应用设计的大语言对话模型和多模态理解模型,包括GLM-Edge-1.5B-Chat、GLM-Edge-4B-Chat、GLM-Edge-V-2B和GLM-Edge-V-5B四种尺寸。这些模型针对手机、车机及PC等不同平台进行了优化,通过量化的技术手段,实现了高效运行。例如,在高通骁龙8 Elite平台上,1.5B对话模型和2B多模态模型能够达到每秒60 tokens以上的解码速度,而通过应用投机采样技术,这一数字可提升至100 tokens以上。
【AI系统】寒武纪介绍
中科寒武纪科技股份有限公司,成立于2016年,致力于打造云边端一体、软硬件协同的智能芯片产品和平台化基础系统软件。寒武纪的产品线涵盖了终端智能处理器IP、边缘端和云端智能加速卡,形成了从1A处理器核到思元系列MLU100、MLU200、MLU300的完整布局。其核心技术包括高效的MLU Core架构和Cambricon Neuware软件栈,支持高性能AI计算,助力机器更好地理解和服务人类。
【AI系统】谷歌 TPU v4 与光路交换
TPU v4 是谷歌在 TPU v3 发布四年后推出的最新一代 AI 加速器,采用了 7nm 工艺,MXU 数量翻倍,内存容量和带宽显著提升。TPU v4 引入了 Sparse Core 以优化稀疏计算,首次采用了 3D Torus 互联方式,通过 Palomar 光路开关芯片减少系统延迟和功耗。TPU v4 Pod 实现了 1.126 Exaflops 的 BF16 峰值算力,展现了谷歌在大规模并行计算领域的突破。然而,TPU v4 也面临着系统成熟度低、拓扑僵硬和负载均衡问题等挑战。
【AI系统】谷歌 TPU v2 训练芯片
2017年,谷歌推出TPU v2,专为神经网络训练设计,标志着从推理转向训练的重大转变。TPU v2引入多项创新,包括Vector Memory、Vector Unit、MXU及HBM内存,以应对训练中数据并行、计算复杂度高等挑战。其高效互联技术构建了TPU v2超级计算机,显著提升大规模模型训练的效率和性能。