DataV首次实战分享:教你30分钟创建汽车大屏
我是一个技术男,同样也是个汽车爱好者,上个月买了辆的宝马,却发现路上的“宝马越来越多”(⊙﹏⊙)b ...... 我喜欢钻研技术,也喜欢钻研汽车,最近研究了一下数据可视化,发现用datav可以玩出一些花样,这次就分享一下我做汽车数据大屏的经验。
阿里封神谈hadoop生态学习之路
在大数据时代,要想个性化实现业务的需求,还是得操纵各类的大数据软件,如:hadoop、hive、spark等。笔者(阿里封神)混迹Hadoop圈子多年,经历了云梯1、ODPS等项目,目前base在E-Mapreduce。在这,笔者尽可能梳理下hadoop的学习之路。
大数据环境下该如何优雅地设计数据分层
发个牢骚,搞大数据的也得建设数据仓库吧。而且不管是传统行业还是现在的互联网公司,都需要对数据仓库有一定的重视,而不是谈一句自己是搞大数据的就很厉害了。数据仓库更多代表的是一种对数据的管理和使用的方式,它是一整套包括了etl、调度、建模在内的完整的理论体系。
odps是什么?
ODPS(Open Data Processing Service),原是阿里云从 09年开始自研的大规模批量计算引擎,2016 年更名为MaxCompute。2022云栖大会上,阿里云ODPS全新升级为一体化大数据平台,存储、调度、元数据一体化融合 ,从 Processing 升级为 Platform,即 Open Data Platform and Service。提供了离线计算、实时交互式分析、机器学习等可扩展的智能计算引擎,满足用户多元化数据计算需求。
【技术实验】mysql准实时同步数据到Elasticsearch
Elasticsearch作为大数据场景下搜索和分析的引擎,广泛应用于实时数据分析等场景。本文作者梳理了从MySQL准实时同步数据到Elasticsearch的实操步骤,帮助开发者理解和快速上手。
阿里云MaxCompute(大数据)公开数据集---带你玩转人工智能
目前阿里云大数据产品已经免费向全部用户开放了多种公用数据集。开放的数据类别包括:股票价格数据,房产信息,影视及其票房数据。
吴刚专访--大数据和 MaxCompute 技术和故事
2019大数据技术公开课第一季《技术人生专访》来袭,本季将带领开发者们探讨大数据技术,分享不同国家的工作体验。本文整理自阿里巴巴计算平台事业部高级技术专家吴刚的专访,将为大家介绍Apache ORC开源项目、主流的开源列存格式ORC和Parquet的区别以及MaxCompute选择ORC的原因。
2017杭州云栖大会FAQ(持续更新中)
2017杭州云栖大会将于10月11-14日在杭州云栖小镇举办,作为全球最具影响力的科技展会之一,今年的云栖大会规模更大,内容也更丰富。为了帮助大家解决报名、参会中的一些问题,小编专门整理了下大会相关的FAQ,供大家参考。
Kibana:数据分析的可视化利器
阿里云Elastisearch集成了可视化工具Kibana,用户可以使用Kibana的开发工具便捷的查询和分析存储在Elastisearch中的数据。除了柱状图、线状图、饼图、环形图等经典可视化功能外,还拥有地理位置分析、数据图谱分析、时序数据分析等高级功能。
品《阿里巴巴大数据实践-大数据之路》一书(上)
7月有人推荐阿里巴巴刚出的这本书《阿里巴巴大数据实践-大数据之路》,到亚马逊一看才是预售状态,拍下直到8月才拿到。 翻看目录一看,欢喜的很,正好出差两天就带在身边,由于在机场滞留超过12个小时,就把它读完了。
如何轮播 DataV 大屏
如何轮播 DataV 大屏 当你使用 DataV 制作了足够多的大屏时,一定会冒出一个需求:轮流播放大屏页面,不要怕,一分钟就可以搞定 安装 Chrome 插件 TabCarousel 首先安装神器插件 TabCarousel 使用 安装完成之后,地址栏右侧会出现这么个小图标 。
干货:解码OneData,阿里的数仓之路。
据IDC报告,预计到2020年全球数据总量将超过40ZB(相当于4万亿GB),这一数据量是2013年的10倍。正在“爆炸式”增长的数据的潜在巨大价值正在被发掘,它有可能成为商业世界的“新能源”,变革我们的生产,影响我们生活。当我们面对如此庞大的数据之时,如果我们不能有序、有结构的进行分类组织
[ETL实践指南]基于Kettle的MaxCompute插件实现数据上云
本文用到的 阿里云数加-大数据计算服务MaxCompute产品地址:https://www.aliyun.com/product/odps 简介 Kettle是一款开源的ETL工具,纯java实现,可以运行于Windows, Unix, Linux上运行,提供图形化的操作界面,可以通过拖拽控件的方式,方便地定义数据传输的拓扑。
OpenSearch:轻松构建大数据搜索服务
随着互联网数据规模的爆炸式增长,如何从海量的历史、实时 数据中快速获取有用信息,变得越来越具有挑战性。搜索是获取信息最高效的途径之一,因此也是各类网站、应用的基础标配功能。开发者想在自己的产品中实现搜索功能一般都是基于某个开源搜索系统(如ElasticSearch、Solr、Sphinx
品《阿里巴巴大数据实践-大数据之路》一书(下)
今天继续谈阿里的这本书,包括数据服务平台、数据挖掘平台、数据建模、数据管理及数据应用,希望于你有启示。 1、数据服务平台 数据服务平台可以叫数据开放平台,数据部门产出海量数据,如何能方便高效地开放出去,是我们一直要解决的难题,在没有数据服务的年代,阿里的数据开放的方式简单、粗暴,一般是直接将数据导出给对方,我想,现在大多公司的开放应该也是如此吧,虽然PaaS喊了这么多年,但真正成就的又有几个? 即使如阿里,在数据开放这个方向上的探索和实践,至今也有7个年头了,任何关于数据开放毕其功于一役的做法都将失败,任何一次数据开放的改进都是伴随着对于业务理解的深入而成长起来的。
JindoFS: 云上大数据的高性能数据湖存储方案
JindoFS 是EMR打造的高性能大数据存储服务,可以为不同的计算引擎提供不同的存储服务,可以根据应用的场景来选择不同的存储模式。在2019杭州云栖大会大数据生态专场,阿里巴巴计算平台事业部EMR团队技术专家殳鑫鑫和Intel大数据团队软件开发经理徐铖共同向大家分享了云上大数据的高性能数据湖存储方案JindoFS的产生背景、架构以及与Intel DCPM的性能评测。
【内含分享PPT/视频/文章】阿里云MVP学院MaxCompute技术闭门会线上首播 | 2019大数据技术公开课第二季
数据的价值是解释业务还是预测业务?是支撑业务还是驱动业务?企业级计算服务的核心问题是什么?企业级计算平台要解决的核心问题是什么?商业和技术的平衡点在哪里? 一起直播学习,让数据真正驱动业务。
如何有效降低大数据平台安全风险
在2019杭州云栖大会大数据企业级服务专场,由阿里云智能计算平台事业部资深技术专家李雪峰带来以“如何有效降低大数据平台安全风险”为题的演讲。本文首先概括了企业在大数据上云过程中会产生的安全顾虑。接着,在大数据平台中要处理的安全风险中,对数据中心物理安全与网络安全、大数据平台系统安全以及数据应用安全三部分做了详细的介绍。最后,描述了阿里云飞天大数据平台的安全体系。
Spark in action on Kubernetes - Playground搭建与架构浅析
前言Spark是非常流行的大数据处理引擎,数据科学家们使用Spark以及相关生态的大数据套件完成了大量又丰富场景的数据分析与挖掘。Spark目前已经逐渐成为了业界在数据处理领域的行业标准。但是Spark本身的设计更偏向使用静态的资源管理,虽然Spark也支持了类似Yarn等动态的资源管理器,但是这些资源管理并不是面向动态的云基础设施而设计的,在速度、成本、效率等领域缺乏解决方案。
梨视频:基于阿里云E-MapReduce搭建视频推荐系统的实践
梨视频由前澎湃新闻掌门人邱兵创立。 在上线之前,它就获得了黎瑞刚华人文化近1亿美元投资,旗下《微辣》栏目总播放量已经超过4亿,并在上线1个月后获得“年度视频新媒体”大奖。 这样一款脱胎于传统媒体的创业型短视频软件,在视频领域异军突起,不仅让内人士在感叹梨视频内容生产力之强大的同时,也诧异于是谁在
流计算精品翻译: The Dataflow Model
我们提出了Dataflow模型,并详细地阐述了它的语义,设计的核心原则,以及在实践开发过程中对模型的检验。
MaxCompute SQL原理解析及性能调优
分享内容 介绍了ODPS SQL的基于mapreduce是如何实现的及一些使用小技巧,回顾了mapreduce各个阶段可能产生的问题及相应的处理方法,同时介绍了一些应对数据倾斜的处理方法,最后介绍了一些关于数据集构造、特征选择的技巧帮助减少资源利用。
基于Alluxio系统的Spark DataFrame高效存储管理技术
介绍越来越多的公司和组织开始将Alluxio和Spark一起部署从而简化数据管理,提升数据访问性能。Qunar最近将Alluxio部署在他们的生产环境中,从而将Spark streaming作业的平均性能提升了15倍,峰值甚至达到300倍左右。
HIVE MapJoin异常问题处理总结
HIVE被很广泛的使用,使用过程中也会遇到各种千奇百怪的问题。这里就遇到的MapJoin Local 内存不足的问题进行讨论,从问题描述、mapjion原理以及产生该问题的原因,解决方案做一下介绍,最后对该问题进行了进一步的思考,希望对解决该类问题的朋友有所帮助。
【玩转数据系列十三】机器学习算法基于信用卡消费记录做信用评分
机器学习算法基于信用卡消费记录做信用评分 背景 如果你是做互联网金融的,那么一定听说过评分卡。评分卡是信用风险评估领域常用的建模方法,评分卡并不简单对应于某一种机器学习算法,而是一种通用的建模框架,将原始数据通过分箱后进行特征工程变换,继而应用于线性模型进行建模的一种方法。
MaxCompute上如何处理非结构化数据
0. 前言 MaxCompute作为阿里云大数据平台的核心计算组件,拥有强大的计算能力,能够调度大量的节点做并行计算,同时对分布式计算中的failover,重试等均有一套行之有效的处理管理机制。 而MaxCompute SQL能在简明的语义上实现各种数据处理逻辑,在集团内外更是广为应用,在其上实现
【玩转数据系列三】利用图算法实现金融行业风控
本文将针对阿里云平台上图算法模块来进行实验。图算法一般被用来解决关系网状的业务场景。与常规的结构化数据不同,图算法需要把数据整理成首尾相连的关系图谱。图算法更多的是考虑边和点的概念。阿里云机器学习平台上提供了丰富的图算法组件,包括K-Core、最大联通子图、标签传播聚类等。
机器学习PAI全新功效——实时新闻热点Online Learning实践
(本实验会用到流式机器学习算法,正处于邀测状态,需要申请开通)PAI地址:https://data.aliyun.com/product/learn流式机器学习算法申请:https://data.aliyun.com/paionlinelearning打开新闻客户端,往往会收到热点新闻推送相关的内容。
倒计时1天!相约杭州云栖,相遇数据智能
2016杭州云栖大会盛大开启,与阿里云大数据一起相约杭州云栖,相遇数据智能!我们精心准备了四大智能看点,等你用一颗大数据的心,鞠一捧智能的“水”。
在PyODPS DataFrame自定义函数中使用pandas、scipy和scikit-learn
背景 [PyODPS DataFrame]http://pyodps.readthedocs.io/zh_CN/latest/) 提供了类似 pandas 的接口,来操作 ODPS 数据,同时也支持在本地使用 pandas,和使用数据库来执行。
阿里云大数据计算平台的自动化、精细化运维之路
作者简介: 范伦挺 阿里巴巴 基础架构事业群-技术专家 花名萧一,2010年加入阿里巴巴,现任阿里巴巴集团大数据计算平台运维负责人。团队主要负责阿里巴巴各类离在线大数据计算平台(如MaxCompute、AnalyticDB、StreamComput
阿里怎么发工资?自研薪酬管理系统首次曝光
作者:墨逐 人力资源管理系统是用集中的数据将几乎所有的人力资源相关的信息(组织、招聘、薪资、绩效、审批等)统一管理起来,是企业运行必不可少的管理软件。国际上知名的有Oracle PeopleSoft、SAP 和Workday HCM,世界500强公司有超过一半都在使用。
首次揭秘|为6.4亿人次出行提供无线网络的技术架构
借助“互联网+大数据+机场”三轮驱动,掌慧纵盈每年为6.4亿人次出行提供无线网络连接服务。 随着业务的拓展,随之后来的挑战是数据量的暴增。 2016年,掌慧纵盈(股票代码:835736)通过阿里云产品,率先构建了业界领先的大数据平台。 本文阐述了一家物联网企业的业务架构和数据架构,以及技术选型
JindoFS概述:云原生的大数据计算存储分离方案
JindoFS 是一套新的云原生的数据湖解决方案。在 JindoFS 之前,云上客户主要使用 HDFS 和 OSS/S3 作为大数据存储。HDFS 是 Hadoop 原生的存储系统,10 年来,HDFS 已经成为大数据生态的存储标准,但是我们也可以看到 HDFS 虽然不断优化,但是 JVM 的瓶颈也始终无法突破。
阿里封神-大数据处理技术漫谈
以前一篇博客,从宏观描述了云梯1当时整体生态,年底了,笔者再梳理下软件栈,主要以开源软件为主,闭源不谈。大数据发展至今,开源软件层出不穷,也去解决了不同的问题,笔者试图去弄清楚这些,分门别类,后面也可以参照下。由于笔者知识面有限,难免会出现一些偏颇,不全,不正确,还请指正。后面也会有很多新的软件出现
助力云上开源生态 - 阿里云开源大数据平台的发展
阿里云E-MapReduce (EMR) 是构建在阿里云云服务器 ECS 上的开源 Hadoop、Spark、HBase、Hive、Flink 生态大数据 PaaS 产品。提供用户在云上使用开源技术建设数据仓库、离线批处理、在线流式处理、即时查询、机器学习等场景下的大数据解决方案。在2019杭州云栖大会大数据生态专场上,阿里巴巴高级产品专家夏立为大家分享了阿里云EMR如何助力云上开源生态。
MaxCompute上你从未体验过的数据分析和机器学习过程
PyODPS,拥有对于Python用户传统的数据分析和机器学习愉快的体验,包括了DataFrame框架和机器学习模块,它们类似于pandas+scikit-learn,能用它们进行数据分析、绘图、机器学习等等。
重磅首发 |《Elasticsearch 中国开发者调查报告》探索开发者的现状和未来
为了了解Elasticsearch 中国开发者群体,结合1186位开发者的调研数据和18位社区专家的深度访谈,Elastic 技术社区、阿里巴巴 Elasticsearch 技术团队和阿里云开发者社区联合发布了《Elasticsearch 中国开发者调查报告》。免费下载,抢先一步读懂这个“族群”吧。
10月18日,德国法兰克福,阿里云MaxCompute2.0,全面布局AI人工智能
在2017年杭州云栖大会上,阿里云宣布大数据计算服务MaxCompute将于10月18日在德国法兰克福正式开服。通过MaxCompute2.0全新一代的人工智能系统,阿里云将携手更多欧洲本地合作伙伴建立科技生态,驱动当地云计算和大数据的发展,将中国先进的云计算推广至海外,在人工智能、深度学习等领域实现突破创新。
标签分类理论
最近在做DMP,负责设计一套标签管理系统。在对现有标签进行整理的过程中,整理出了这套东西。 0. 标签的定义:标签分类学(Taxonomy) 对于标签(tag),很难列出一个公认的定义,指明这个概念的种差与属概念。所以为了把握这个概念,就需要采取定义另一种办法:分类与枚举。 我们要解决的第一个
数据库工程师快速上手MaxCompute进行ETL
案例说明 本案例主要是介绍如何通过数加MaxCompute+大数据开发套件两个产品实现简单的网站数据统计分析。 适用人群 MaxCompute初学者,特别是无大数据开发基础但有数据库使用基础。 案例侧重 数据库工程师快速上手MaxCompute进行大数据开发,简单了解在MaxCompute做大数据ETL过程,同时了解一些MaxCompute SQL和常用数据库SQL的基本区别。
基于DNN+GBDT的Query类目预测融合模型
用户搜索意图的理解在搜索排序体系下有着重要的作用。在搜索引擎中,分析用户的搜索Query和哪些文档类目的意图更相关,被称为Query的类目预测。本文通过集合Query的语义和行为等特征,计算得到与Query最相关的类目,并在线上得到了相关性的体验的提升。
【译】使用Spark SQL 运行大规模基因组工作流
将数据提取到Spark中是大多数大数据作业的第一步,但这并不是大数据旅途的终点。
拍立淘---试妆魔镜 OpenGL ES 2.0 框架及性能优化
手机淘宝(搜索框->摄像头->试妆魔镜): 最初的设计原型及性能问题: 单线程模型,优先级过低:从Camera获取到CMSampleBufferRef YUV图像帧,拷贝像素数据到内存(多了一次拷贝内存的开销)进行美妆渲染以及一些其他的检测计算,导致的render线程性能消耗过多,CPU负
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。