DataV首次实战分享:教你30分钟创建汽车大屏
我是一个技术男,同样也是个汽车爱好者,上个月买了辆的宝马,却发现路上的“宝马越来越多”(⊙﹏⊙)b ...... 我喜欢钻研技术,也喜欢钻研汽车,最近研究了一下数据可视化,发现用datav可以玩出一些花样,这次就分享一下我做汽车数据大屏的经验。
odps是什么?
ODPS(Open Data Processing Service),原是阿里云从 09年开始自研的大规模批量计算引擎,2016 年更名为MaxCompute。2022云栖大会上,阿里云ODPS全新升级为一体化大数据平台,存储、调度、元数据一体化融合 ,从 Processing 升级为 Platform,即 Open Data Platform and Service。提供了离线计算、实时交互式分析、机器学习等可扩展的智能计算引擎,满足用户多元化数据计算需求。
【玩转数据系列六】文本分析算法实现新闻自动分类
新闻分类是文本挖掘领域较为常见的场景。目前很多媒体或是内容生产商对于新闻这种文本的分类常常采用人肉打标的方式,消耗了大量的人力资源。本文尝试通过智能的文本挖掘算法对于新闻文本进行分类。无需任何人肉打标,完全由机器智能化实现。
独家专访阿里集团副总裁贾扬清:我为什么选择加入阿里巴巴?
在这次访谈中,贾扬清向我们透露了他加入阿里的原因,并对他目前在阿里主要负责的工作做了详细说明,他不仅回顾了过去 6 年 AI 框架领域发生的变化,也分享了自己对于 AI 领域现状的观察和对未来发展的思考。结合自己的经验,贾扬清也给出了一些针对 AI 方向选择和个人职业发展的建议,对于 AI 从业者来
品《阿里巴巴大数据实践-大数据之路》一书(上)
7月有人推荐阿里巴巴刚出的这本书《阿里巴巴大数据实践-大数据之路》,到亚马逊一看才是预售状态,拍下直到8月才拿到。 翻看目录一看,欢喜的很,正好出差两天就带在身边,由于在机场滞留超过12个小时,就把它读完了。
流计算StreamCompute
背景 每年的双十一除了“折扣”,全世界(特别是阿里人)都关注的另一个焦点是面向媒体直播的“实时大屏”(如下图所示)。包括总成交量在内的各项指标,通过数字维度展现了双十一狂欢节这一是买家,卖家及物流小二一起创造的奇迹! 双十一媒体直播大屏 这一大屏背后需要实时处理海量的庞大电商系统各个模块产生的
MaxCompute常见错误汇总(更新ing)
从今天开始,小编会为大家陆续解读MaxCompute常见问题,帮助大家快速上手MaxCompute,玩转大数据计算平台。
通过Flink实时构建搜索引擎的索引
1.背景介绍 搜索引擎的出现大大降低了人们寻找信息的难度,已经深入到生活与工作的方方面面,简单列举几个应用如下: 互联网搜索,如谷歌,百度等; 垂直搜索,如淘宝、天猫的商品搜索; 站内搜索,各个内容网站提供的站内搜索服务; 企业内部搜索,员工查询企业内部信息; 广告投放,根据投放上下文检索出对应的广告主和广告内容; 搜索引擎的关键是让用户找到其所需信息,其整体架构如下: 从图示可知,一个搜索引擎从大的方面来看主要包括两部分,一部分是提供在线的搜索服务,一部分要把原始数据已离线的方式建立索引,建立索引是信息可搜索的前提。
Flume+Kafka+Flink+Redis构建大数据实时处理系统:实时统计网站PV、UV展示
1.大数据处理的常用方法 大数据处理目前比较流行的是两种方法,一种是离线处理,一种是在线处理,基本处理架构如下: 在互联网应用中,不管是哪一种处理方式,其基本的数据来源都是日志数据,例如对于web应用来说,则可能是用户的访问日志、用户的点击日志等。
JindoFS: 云上大数据的高性能数据湖存储方案
JindoFS 是EMR打造的高性能大数据存储服务,可以为不同的计算引擎提供不同的存储服务,可以根据应用的场景来选择不同的存储模式。在2019杭州云栖大会大数据生态专场,阿里巴巴计算平台事业部EMR团队技术专家殳鑫鑫和Intel大数据团队软件开发经理徐铖共同向大家分享了云上大数据的高性能数据湖存储方案JindoFS的产生背景、架构以及与Intel DCPM的性能评测。
DL应用:query生成和query推荐
引言 在机器翻译、图片描述、语义蕴涵、语音识别和文本摘要中,序列到序列的问题已经有太多大牛研究了,也取得了很多突破。谷歌的Attention is all you need[1],舍弃并超越了主流的rnn与cnn序列建模框架,刷出了新的state of the art,这种大胆创新的精神值得我们学习。
流计算精品翻译: The Dataflow Model
我们提出了Dataflow模型,并详细地阐述了它的语义,设计的核心原则,以及在实践开发过程中对模型的检验。
PyODPS DataFrame 处理笛卡尔积的几种方式
PyODPS 提供了 DataFrame API 来用类似 pandas 的接口进行大规模数据分析以及预处理,本文主要介绍如何使用 PyODPS 执行笛卡尔积的操作。 笛卡尔积最常出现的场景是两两之间需要比较或者运算。
接着!!Apache Flink 全领域干货合集(持续更新)
Apache Flink 下一代开源大数据计算引擎, 可对有限数据流和无限数据流进行有状态计算,可部署在各种集群环境,对各种大小的数据规模进行快速计算。Flink 1.9.0 发布,在批流融合与功能特性上有重大更新,本专题将持续更新新增特性的具体说明及全领域干货。
Flink SQL 功能解密系列 —— 流式 TopN 挑战与实现
TopN 是统计报表和大屏非常常见的功能,主要用来实时计算排行榜。流式的 TopN 不同于批处理的 TopN,它的特点是持续的在内存中按照某个统计指标(如出现次数)计算 TopN 排行榜,然后当排行榜发生变化时,发出更新后的排行榜。
机器学习PAI全新功效——实时新闻热点Online Learning实践
(本实验会用到流式机器学习算法,正处于邀测状态,需要申请开通)PAI地址:https://data.aliyun.com/product/learn流式机器学习算法申请:https://data.aliyun.com/paionlinelearning打开新闻客户端,往往会收到热点新闻推送相关的内容。
SQL优化器原理 - Join重排
这是MaxCompute有关SQL优化器原理的系列文章之一。我们会陆续推出SQL优化器有关优化规则和框架的其他文章。添加钉钉群“关系代数优化技术”(群号11719083)可以获取最新文章发布动态。 本文的目标是解释Join重排这个特性的基础概念和算法,如果想快速了解并在MaxCompute上使用这个特性,请直接跳到“总结”。
阿里怎么发工资?自研薪酬管理系统首次曝光
作者:墨逐 人力资源管理系统是用集中的数据将几乎所有的人力资源相关的信息(组织、招聘、薪资、绩效、审批等)统一管理起来,是企业运行必不可少的管理软件。国际上知名的有Oracle PeopleSoft、SAP 和Workday HCM,世界500强公司有超过一半都在使用。
3天撸完一个团队半年的项目,单客户数据动辄几百万的行业也玩云?
自97年成立至今已接近20年,在前十六七年 明源云主要跑在传统ERP软件轨道上,4年前世界变了,云计算&移动互联网来了,两个最大的行业变量,如果不做出改变就可能被颠覆。因此,明源云决定开辟新战场,用互联网的方式来做地产行业。
标签分类理论
最近在做DMP,负责设计一套标签管理系统。在对现有标签进行整理的过程中,整理出了这套东西。 0. 标签的定义:标签分类学(Taxonomy) 对于标签(tag),很难列出一个公认的定义,指明这个概念的种差与属概念。所以为了把握这个概念,就需要采取定义另一种办法:分类与枚举。 我们要解决的第一个
阿里大航杯AI电力大赛比赛分享及数加平台,机器学习pai使用经验
本文主要以阿里云大航杯“智造扬中”电力AI大赛 数据为背景,讲述博主自己的比赛经历以及数加平台和机器学习pai的使用经验
基于阿里云数加MaxCompute的企业大数据仓库架构建设思路
数加大数据直播系列课程主要以基于阿里云数加MaxCompute的企业大数据仓库架构建设思路为主题分享阿里巴巴的大数据是怎么演变以及怎样利用大数据技术构建企业级大数据平台。 本次分享嘉宾是来自阿里云大数据的技术专家祎休 背景与总体思路 数据仓库是一个面向主题的、集成的、非易失的、反映历史变化的数据集合用于支持管理决策。
EMR Spark Relational Cache的执行计划重写
作者:王道远,花名健身, 阿里巴巴计算平台EMR技术专家。 背景 EMR Spark提供的Relational Cache功能,可以通过对数据模型进行预计算和高效地存储,加速Spark SQL,为客户实现利用Spark SQL对海量数据进行即时查询的目的。
“阿里巴巴大数据系统体系”学习笔记-纲领篇
‘你是做什么的?’ ‘数据产品经理’看到对方一脸懵逼之后,再补充一句‘大数据相关的工作’ ‘哦~,高大上,不懂’ 过去5年,‘大数据’是最火的一个概念,被纷繁解读。在我看来,数据跟石油、煤炭一样是一种资源。
Mars——基于张量的统一分布式计算框架
很高兴在这里宣布我们的新项目:Mars,一个基于张量的统一分布式计算框架。我们已经在 Github 开源:https://github.com/mars-project/mars 。 背景 Python Python 是一门相当古老的语言了,如今,在数据科学计算、机器学习、以及深度学习领域,Python 越来越受欢迎。
如何在 PyFlink 1.10 中自定义 Python UDF?
本篇从架构到 UDF 接口定义,再到具体的实例,向大家介绍了在 Apache Flink 1.10 发布之后,如何利用 PyFlink 进行业务开发。
flume java介绍
近期在做shark flume开发框架的测试,该框架是一个简单高效的面向数据的pipeline框架,采用flume java的思想,实现了一套flume java on MaxCompute的library。为了更好的了解shark自己也去阅读了flume java的paper,这里做一些总结,主要
Apache Flink 漫谈系列(04) - State
实际问题 在流计算场景中,数据会源源不断的流入Apache Flink系统,每条数据进入Apache Flink系统都会触发计算。如果我们想进行一个Count聚合计算,那么每次触发计算是将历史上所有流入的数据重新新计算一次,还是每次计算都是在上一次计算结果之上进行增量计算呢?答案是肯定的,Apache Flink是基于上一次的计算结果进行增量计算的。
HAS-插件式Kerberos认证框架
HAS (Hadoop Authentication Service), 致力于解决开源大数据服务和生态系统的认证支持。目前开源大数据(Hadoop/Spark)在安全认证上只内置支持了Kerberos方式,HAS提出了一种新的认证方式, 通过与现有的认证和授权体系进行对接,使得在Hadoop/Spark在上面支持Kerberos以外的认证方式变成可能,并对最终用户简化和隐藏Kerberos的复杂性。
DII—算法服务利器
随着集团内各种离线处理、实时反馈、在线学习和分析系统的发展壮大,为算法同学使用数据提供了更多的手段和玩法,能够从数据中挖掘出更多的宝藏。但是仅仅产出数据是不够的,他们需要将数据结合算法在线服务的方式应用到业务中去,才能真正产生价值。从搜索事业部的现状来看,算法的作用方式主要有两种,一种是嵌入引擎内.
使用 Kafka 和 Flink 构建实时数据处理系统
引言 在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
“NASA”计划背后,阿里巴巴大数据系统架构概述
DT时代,人们比以往任何时候都收集到更多的数据。据IDC报告,预计到2020年,全球数据总量将超过40ZB(相当于40万亿GB),这一数据量是2011年的22倍!正在“爆炸式”增长的数据,其潜在巨大价值有待发掘。
深度语义模型以及在淘宝搜索中的应用
传统的搜索文本相关性模型,如BM25通常计算Query与Doc文本term匹配程度。由于Query与Doc之间的语义gap, 可能存在很多语义相关,但文本并不匹配的情况。为了解决语义匹配问题,出现很多LSA,LDA等语义模型。
PyODPS 中使用 Python UDF
PyODPS 中使用 Python UDF 包含两方面,一个是直接使用,也就是在 MaxCompute SQL 中使用;一个是间接的方式,也就是 PyODPS DataFrame,这种方式你不需要直接写 Python UDF,而是写普通的 Python 函数或者类。
大数据上云那些事儿:(一)上云工具之爬虫(Scrapy)数据
在如今互联网环境下,网络上的各种业务数据,如新闻,社交网站,交易类数据等各种各样的数据越来越多被应用到企业的数据运营中,这些数据一般都数据量巨大,是最适合用MaxCompute来进行分析和加工的一类数据,尤其可以利用MaxCompute的机器学习能力来完成一些数据挖掘的业务场景,本文就介绍如何利用开源的Scrapy爬虫框架来爬取新闻网站的数据到MaxCompute中。
11月14日Spark社区直播【 Spark on Kubernetes & YARN】
本次直播将讨论:以Kubernetes为代表的云原生技术越来越流行起来,spark是如何跑在Kubernetes之上来享受云原生技术的红利?Spark跑在Kubernetes之上和跑在Hadoop YARN上又有什么区别?以及Kubernetes 和YARN的差异点是什么。
YARN中的CPU资源隔离-CGroups
YARN中集成了CGroups的功能,使得NodeManger可以对container的CPU的资源使用进行控制,比如可以对单个container的CPU使用进行控制,也可以对NodeManger管理的总CPU进行控制。
阿里巴巴高级技术专家章剑锋:大数据发展的 8 个要点
章剑锋(简锋),开源界老兵,Apache Member,曾就职于 Hortonworks,目前在阿里巴巴计算平台事业部任高级技术专家,并同时担任 Apache Tez、Livy 、Zeppelin 三个开源项目的 PMC ,以及 Apache Pig 的 Committer。
阿里云大学精品课程:深入理解阿里云数加大数据开发套件Data IDE-基本知识
基于阿里云数加·MaxCompute构建大数据仓库的开发工具利器Data IDE《MaxCompute(原ODPS)开发入门指南——数据开发工具篇》,那么基于Data IDE进行数据开发想必也遇到一些不少的困惑,就自己在培训过程中的一些经验或者说阿里集团内的踩坑之路与大家在此分享,也欢迎拍砖。
时序数据库场景下的Elasticsearch(一):技术特点简介
本文介绍了时间序列数据的特点和主流的技术分类,以及Elasticsearch在时序数据库场景下的技术特点。
PAI实现的深度学习网络可视化编辑功能-FastNeuralNetwork
在深度学习领域流传着这样一句话,“一张好的表示图,胜过一千个公式” 本文会介绍如何通过PAI-DSW中的FastNerualNetwork功能实现深度学习网络的可视化编辑。 神经网络最早诞生于生物领域,用来模仿生物大脑复杂的神经元构成,后来人类为了探索大脑是如何思考,通过一层一层的数学公式来模拟大脑分析事物的过程。
MaxCompute Studio使用心得系列6——一个工具完成整个Python UDF开发
2017/12/20 北京云栖大会上阿里云MaxCompute发布了最新的功能Python UDF,万众期待的功能终于支持啦,我怎么能不一试为快,今天就分享如何通过Studio进行Python udf开发。
大数据与机器学习
大数据领域前沿技术分享与交流,这里不止有技术干货、学习心得、企业实践、社区活动,还有未来。