04_昇腾推荐系统:单双层架构解析
单双层架构互补共存:单层追求极致性能,适用于小规模特征;双层突破内存瓶颈,支持大规模扩展。结合动态扩容、准入淘汰与高效查表,实现推荐系统大规模稀疏参数的高效训练与管理。
03_嵌入表分片与哈希管理:支撑万亿参数的关键技术
本文介绍支撑万亿参数推荐系统的核心技术:嵌入表分片与哈希管理。通过单/双层Hash模式实现稀疏ID高效映射,结合分桶策略均匀分配数据;采用Row-Wise、Table-Wise等分片机制,优化存储与计算负载,提升大规模模型训练效率。
王耀恒:GEO不是做榜单,而是建信任
在生成式引擎时代,GEO的核心不是追逐榜单可见性,而是构建AI与用户双重认可的“信任共识”。王耀恒指出,真正的竞争力源于成为可信赖的知识源:以事实准确、逻辑清晰、伦理负责为基础,打造算法可识别、用户可感知的信任体系。短期操纵终将失效,唯有长期积累的信任,才是数字生存的战略基石。
从一条慢SQL说起:交易订单表如何做索引优化
本文首先以淘天电商交易订单表线上一条非典型慢 SQL 的深入剖析为切入点,示范如何系统地分析与排查慢 SQL;接着详尽归纳了索引分类、B+Tree 与 B‑Tree 的结构差异、B+Tree 高度估算方法、EXPLAIN 与 Query Profile 等诊断工具的使用,以及索引下推与排序的执行流程等索引优化理论;最后结合日常实践经验,提出了适用于大规模线上集群的索引变更 SOP,并总结了常见的慢 SQL 成因与相应的解决策略。