【PyTorch基础教程25】用Pytorch训练快速神经网络的9个技巧

简介: 这份指南的介绍从简单到复杂,一直介绍到你可以完成的大多数PITA修改,以充分利用你的网络。例子中会包括一些Pytorch代码和相关标记,可以在 Pytorch-Lightning训练器中用,以防大家不想自己敲码!

事实上,你的模型可能还停留在石器时代的水平。估计你还在用32位精度或GASP(一般活动仿真语言) 训练,甚至可能只在单GPU上训练。如果市面上有99个加速指南,但你可能只看过1个?(没错,就是这样)。但这份终极指南,会一步步教你清除模型中所有的(GP模型)。

这份指南的介绍从简单到复杂,一直介绍到你可以完成的大多数PITA修改,以充分利用你的网络。例子中会包括一些Pytorch代码和相关标记,可以在 Pytorch-Lightning训练器中用,以防大家不想自己敲码!

这份指南针对的是谁? 任何用Pytorch研究非琐碎的深度学习模型的人,比如工业研究人员、博士生、学者等等……这些模型可能要花费几天,甚至几周、几个月的时间来训练。

本文涵盖以下内容(从易到难):

使用DataLoader

DataLoader中的进程数

批尺寸

累积梯度

保留计算图

转至单GPU

16位混合精度训练

转至多GPU(模型复制)

转至多GPU节点(8+GPUs)

有关模型加速的思考和技巧

Pytorch-Lightning

文中讨论的各种优化,都可以在Pytorch-Lightning找到:https://github.com/williamFalcon/pytorch-lightning?source=post_page

Lightning是基于Pytorch的一个光包装器,它可以帮助研究人员自动训练模型,但关键的模型部件还是由研究人员完全控制。

参照此篇教程,获得更有力的范例:https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/single_gpu_node_template.py?source=post_page

Lightning采用最新、最尖端的方法,将犯错的可能性降到最低。

MNIST定义的Lightning模型可适用于训练器:https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/lightning_module_template.py?source=post_page

from pytorch-lightning import Trainer
model = LightningModule(…)
trainer = Trainer()
trainer.fit(model)

1. DataLoader

这可能是最容易提速的地方。靠保存h5py或numpy文件来加速数据加载的日子已经一去不复返了。用 Pytorch dataloader 加载图像数据非常简单:https://pytorch.org/tutorials/beginner/data_loading_tutorial.html?source=post_page

关于NLP数据,请参照TorchText:https://torchtext.readthedocs.io/en/latest/datasets.html?source=post_page

dataset = MNIST(root=self.hparams.data_root, train=train, download=True)
loader = DataLoader(dataset, batch_size=32, shuffle=True)
for batch in loader: 
  x, y = batch
  model.training_step(x, y)
  ...

在Lightning中,你无需指定一个训练循环,只需定义dataLoaders,训练器便会在需要时调用它们。

2. DataLoaders中的进程数

加快速度的第二个秘诀在于允许批量并行加载。所以,你可以一次加载许多批量,而不是一次加载一个。

# slow
loader = DataLoader(dataset, batch_size=32, shuffle=True)
# fast (use 10 workers)
loader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=10)

3. 批量大小(Batch size)

在开始下一步优化步骤之前,将批量大小调高到CPU内存或GPU内存允许的最大值。

接下来的部分将着重于减少内存占用,这样就可以继续增加批尺寸。

记住,你很可能需要再次更新学习率。如果将批尺寸增加一倍,最好将学习速度也提高一倍。

4. 累积梯度

假如已经最大限度地使用了计算资源,而批尺寸仍然太低(假设为8),那我们则需为梯度下降模拟更大的批尺寸,以供精准估计。

假设想让批尺寸达到128。然后,在执行单个优化器步骤前,将执行16次前向和后向传播(批量大小为8)。

# clear last step
optimizer.zero_grad()
# 16 accumulated gradient steps
scaled_loss = 0
for accumulated_step_i in range(16): 
     out = model.forward()
     loss = some_loss(out,y)    
     loss.backward()     
       scaled_loss += loss.item()
# update weights after 8 steps. effective batch = 8*16
optimizer.step()
# loss is now scaled up by the number of accumulated batches
actual_loss = scaled_loss / 16properties

而在Lightning中,这些已经自动执行了。只需设置标记:

trainer = Trainer(accumulate_grad_batches=16)
trainer.fit(model)

5. 保留计算图

撑爆内存很简单,只要不释放指向计算图形的指针,比如……为记录日志保存loss。

losses = []
...
losses.append(loss)
print(f'current loss: )

上述的问题在于,loss仍然有一个图形副本。在这种情况中,可用.item()来释放它。

# bad
losses.append(loss)
# good
losses.append(loss.item())

Lightning会特别注意,让其无法保留图形副本。示例:https://github.com/williamFalcon/pytorch-lightning/blob/master/pytorch_lightning/models/trainer.py#L812

6. 单GPU训练

一旦完成了前面的步骤,就可以进入GPU训练了。GPU的训练将对许多GPU核心上的数学计算进行并行处理。能加速多少取决于使用的GPU类型。个人使用的话,推荐使用2080Ti,公司使用的话可用V100。

刚开始你可能会觉得压力很大,但其实只需做两件事:1)将你的模型移动到GPU上,2)在用其运行数据时,把数据导至GPU中。

# put model on GPU
model.cuda(0)
# put data on gpu (cuda on a variable returns a cuda copy)
x = x.cuda(0)
# runs on GPU now
model(x)

如果使用Lightning,则不需要对代码做任何操作。只需设置标记:

# ask lightning to use gpu 0 for training
trainer = Trainer(gpus=[0])
trainer.fit(model)

在GPU进行训练时,要注意限制CPU和GPU之间的传输量。

# expensive
x = x.cuda(0)
# very expensive
x = x.cpu()
x = x.cuda(0)

例如,如果耗尽了内存,不要为了省内存,将数据移回CPU。尝试用其他方式优化代码,或者在用这种方法之前先跨GPUs分配代码。

此外还要注意进行强制GPUs同步的操作。例如清除内存缓存。

# really bad idea.Stops all the GPUs until they all catch up
torch.cuda.empty_cache()

但是如果使用Lightning,那么只有在定义Lightning模块时可能会出现这种问题。Lightning特别注意避免此类错误。

7. 16位精度

16位精度可以有效地削减一半的内存占用。大多数模型都是用32位精度数进行训练的。然而最近的研究发现,使用16位精度,模型也可以很好地工作。混合精度指的是,用16位训练一些特定的模型,而权值类的用32位训练。

要想在Pytorch中用16位精度,先从NVIDIA中安装 apex 图书馆 并对你的模型进行这些更改。

# enable 16-bit on the model and the optimizer
model, optimizers = amp.initialize(model, optimizers, opt_level='O2')
# when doing .backward, let amp do it so it can scale the loss
with amp.scale_loss(loss, optimizer) as scaled_loss:                       
    scaled_loss.backward()

amp包会处理大部分事情。如果梯度爆炸或趋于零,它甚至会扩大loss。

在Lightning中, 使用16位很简单,不需对你的模型做任何修改,也不用完成上述操作。

trainer = Trainer(amp_level=’O2', use_amp=False)
trainer.fit(model)

8. 移至多GPU

现在,事情就变得有意思了。有3种(也许更多?)方式训练多GPU。

分批量训练

A)在每个GPU上复制模型;B)给每个GPU分配一部分批量。

第一种方法叫做分批量训练。这一策略将模型复制到每个GPU上,而每个GPU会分到该批量的一部分。

# copy model on each GPU and give a fourth of the batch to each
model = DataParallel(model, devices=[0, 1, 2 ,3])
# out has 4 outputs (one for each gpu)
out = model(x.cuda(0))

在Lightning中,可以直接指示训练器增加GPU数量,而无需完成上述任何操作。

# ask lightning to use 4 GPUs for training
trainer = Trainer(gpus=[0, 1, 2, 3])
trainer.fit(model)

分模型训练

将模型的不同部分分配给不同的GPU,按顺序分配批量

有时模型可能太大,内存不足以支撑。比如,带有编码器和解码器的Sequence to Sequence模型在生成输出时可能会占用20gb的内存。在这种情况下,我们希望把编码器和解码器放在单独的GPU上。

# each model is sooo big we can't fit both in memory
encoder_rnn.cuda(0)
decoder_rnn.cuda(1)
# run input through encoder on GPU 0
out = encoder_rnn(x.cuda(0))
# run output through decoder on the next GPU
out = decoder_rnn(x.cuda(1))
# normally we want to bring all outputs back to GPU 0
out = out.cuda(0)

对于这种类型的训练,无需将Lightning训练器分到任何GPU上。与之相反,只要把自己的模块导入正确的GPU的Lightning模块中:

class MyModule(LightningModule):
def __init__(): 
        self.encoder = RNN(...)
        self.decoder = RNN(...)
def forward(x):
    # models won't be moved after the first forward because 
        # they are already on the correct GPUs
        self.encoder.cuda(0)
        self.decoder.cuda(1)     
out = self.encoder(x)
        out = self.decoder(out.cuda(1))
# don't pass GPUs to trainer
model = MyModule()
trainer = Trainer()
trainer.fit(model)

混合两种训练方法

在上面的例子中,编码器和解码器仍然可以从并行化每个操作中获益。我们现在可以更具创造力了。

# change these lines
self.encoder = RNN(...)
self.decoder = RNN(...)
# to these
# now each RNN is based on a different gpu set
self.encoder = DataParallel(self.encoder, devices=[0, 1, 2, 3])
self.decoder = DataParallel(self.encoder, devices=[4, 5, 6, 7])
# in forward...
out = self.encoder(x.cuda(0))
# notice inputs on first gpu in device
sout = self.decoder(out.cuda(4))  # <--- the 4 here

使用多GPUs时需注意的事项

如果该设备上已存在model.cuda(),那么它不会完成任何操作。

始终输入到设备列表中的第一个设备上。

跨设备传输数据非常昂贵,不到万不得已不要这样做。

优化器和梯度将存储在GPU 0上。因此,GPU 0使用的内存很可能比其他处理器大得多。

9. 多节点GPU训练

每台机器上的各GPU都可获取一份模型的副本。每台机器分得一部分数据,并仅针对该部分数据进行训练。各机器彼此同步梯度。

做到了这一步,就可以在几分钟内训练Imagenet数据集了! 这没有想象中那么难,但需要更多有关计算集群的知识。这些指令假定你正在集群上使用SLURM。

Pytorch在各个GPU上跨节点复制模型并同步梯度,从而实现多节点训练。因此,每个模型都是在各GPU上独立初始化的,本质上是在数据的一个分区上独立训练的,只是它们都接收来自所有模型的梯度更新。

高级阶段:

在各GPU上初始化一个模型的副本(确保设置好种子,使每个模型初始化到相同的权值,否则操作会失效。)

将数据集分成子集。每个GPU只在自己的子集上训练。

On .backward() 所有副本都会接收各模型梯度的副本。只有此时,模型之间才会相互通信。

Pytorch有一个很好的抽象概念,叫做分布式数据并行处理,它可以为你完成这一操作。要使用DDP(分布式数据并行处理),需要做4件事:

def tng_dataloader(,m):
d = MNIST()
     # 4: Add distributed sampler
     # sampler sends a portion of tng data to each machine
     dist_sampler = DistributedSampler(dataset)
     dataloader = DataLoader(d, shuffle=False, sampler=dist_sampler)
def main_process_entrypoint(gpu_nb): 
     # 2: set up connections  between all gpus across all machines
     # all gpus connect to a single GPU "root"
     # the default uses env://
     world = nb_gpus * nb_nodes
     dist.init_process_group("nccl", rank=gpu_nb, world_size=world)
     # 3: wrap model in DPP
     torch.cuda.set_device(gpu_nb)
     model.cuda(gpu_nb)
     model = DistributedDataParallel(model, device_ids=[gpu_nb])
     # train your model now...
if  __name__ == '__main__': 
     # 1: spawn number of processes
     # your cluster will call main for each machine
     mp.spawn(main_process_entrypoint, nprocs=8)

Pytorch团队对此有一份详细的实用教程:https://github.com/pytorch/examples/blob/master/imagenet/main.py?source=post_page

然而,在Lightning中,这是一个自带功能。只需设定节点数标志,其余的交给Lightning处理就好。

# train on 1024 gpus across 128 nodes
trainer = Trainer(nb_gpu_nodes=128, gpus=[0, 1, 2, 3, 4, 5, 6, 7])

Lightning还附带了一个SlurmCluster管理器,可助你简单地提交SLURM任务的正确细节。示例:https://github.com/williamFalcon/pytorch-lightning/blob/master/examples/new_project_templates/multi_node_cluster_template.py#L103-L134

10. 福利!更快的多GPU单节点训练

事实证明,分布式数据并行处理要比数据并行快得多,因为其唯一的通信是梯度同步。因此,最好用分布式数据并行处理替换数据并行,即使只是在做单机训练。

在Lightning中,通过将distributed_backend设置为ddp(分布式数据并行处理)并设置GPU的数量,这可以很容易实现。

# train on 4 gpus on the same machine MUCH faster than DataParallel
trainer = Trainer(distributed_backend='ddp', gpus=[0, 1, 2, 3])

有关模型加速的思考和技巧

如何通过寻找瓶颈来思考问题?可以把模型分成几个部分:

首先,确保数据加载中没有瓶颈。为此,可以使用上述的现有数据加载方案,但是如果没有适合你的方案,你可以把离线处理及超高速缓存作为高性能数据储存,就像h5py一样。

接下来看看在训练过程中该怎么做。确保快速转发,避免多余的计算,并将CPU和GPU之间的数据传输最小化。最后,避免降低GPU的速度(在本指南中有介绍)。

接下来,最大化批尺寸,通常来说,GPU的内存大小会限制批量大小。自此看来,这其实就是跨GPU分布,但要最小化延迟,有效使用大批次(例如在数据集中,可能会在多个GPUs上获得8000+的有效批量大小)。

但是需要小心处理大批次。根据具体问题查阅文献,学习一下别人是如何处理的!

原文链接:https://towardsdatascience.com/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
这篇文章介绍了如何使用PyTorch框架,结合CIFAR-10数据集,通过定义神经网络、损失函数和优化器,进行模型的训练和测试。
110 2
目标检测实战(一):CIFAR10结合神经网络加载、训练、测试完整步骤
|
29天前
|
存储 物联网 PyTorch
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
**Torchtune**是由PyTorch团队开发的一个专门用于LLM微调的库。它旨在简化LLM的微调流程,提供了一系列高级API和预置的最佳实践
138 59
基于PyTorch的大语言模型微调指南:Torchtune完整教程与代码示例
|
2月前
|
机器学习/深度学习 数据可视化 计算机视觉
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
63 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
|
14天前
|
并行计算 监控 搜索推荐
使用 PyTorch-BigGraph 构建和部署大规模图嵌入的完整教程
当处理大规模图数据时,复杂性难以避免。PyTorch-BigGraph (PBG) 是一款专为此设计的工具,能够高效处理数十亿节点和边的图数据。PBG通过多GPU或节点无缝扩展,利用高效的分区技术,生成准确的嵌入表示,适用于社交网络、推荐系统和知识图谱等领域。本文详细介绍PBG的设置、训练和优化方法,涵盖环境配置、数据准备、模型训练、性能优化和实际应用案例,帮助读者高效处理大规模图数据。
43 5
|
3月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
141 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
2月前
|
弹性计算 Kubernetes 网络协议
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
阿里云弹性网络接口技术的容器网络基础教程
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
58 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
2月前
|
机器学习/深度学习 算法 TensorFlow
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。
358 0
深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决
|
3月前
|
网络协议 开发者 Python
网络编程小白秒变大咖!Python Socket基础与进阶教程,轻松上手无压力!
在网络技术飞速发展的今天,掌握网络编程已成为开发者的重要技能。本文以Python为工具,带你从Socket编程基础逐步深入至进阶领域。首先介绍Socket的概念及TCP/UDP协议,接着演示如何用Python创建、绑定、监听Socket,实现数据收发;最后通过构建简单的聊天服务器,巩固所学知识。让初学者也能迅速上手,成为网络编程高手。
76 1
|
3月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。

热门文章

最新文章