小土堆-pytorch-神经网络-损失函数与反向传播_笔记

简介: 在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。

在使用lossfuntion的时候,只需要关注输入形状和输出形状

L1Loss

关注点是输入形状:N是batch_size大小
image.png

一个具体的使用案例

L1Loss1 默认分别做差,加和计算平均值

import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)        #在使用L1Loss的过程中,是需要变量的浮点类型的            #输入
targets=torch.tensor([1,2,5],dtype=torch.float32)        #目标

inputs=torch.reshape(inputs,(1,1,1,3))
targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss()
result=loss(inputs,targets)
print(result)
AI 代码解读

运行结果截图:
image.png

不计算平均值


import torch
from torch.nn import L1Loss

inputs=torch.tensor([1,2,3],dtype=torch.float32)        #在使用L1Loss的过程中,是需要变量的浮点类型的            #输入
targets=torch.tensor([1,2,5],dtype=torch.float32)        #目标

inputs=torch.reshape(inputs,(1,1,1,3))
targets=torch.reshape(targets,(1,1,1,3))

loss=L1Loss(reduction='sum')
result=loss(inputs,targets)
print(result)
AI 代码解读

运行结果截图:
image.png

MSELOSS 均方误差

均方误差是常用的

实战LossFunction

未加lossfunction

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 数据集
dataset=torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataLoader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )

    def forward(self,x):
        x=self.model1(x)
        return x

tudui=Tudui()
for data in dataLoader:
    imgs,targets=data
    outputs=tudui(imgs)
    print(outputs)
    print(targets)
AI 代码解读

输出10个类别的概率
运行结果截图:
image.png

加入lossfunction

lossfunction作用一 计算实际输出与目标之间的差距

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 数据集
dataset=torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataLoader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self,x):
        x=self.model1(x)
        return x
loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataLoader:
    imgs,targets=data
    outputs=tudui(imgs)
    result_loss=loss(outputs,targets)
    print(result_loss)
AI 代码解读

运行结果截图:
image.png

lossfunction作用二 为我们更新提供一定的依据(反向传播)

加入梯度下降

import torch
import torchvision
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

# 数据集
dataset=torchvision.datasets.CIFAR10("../data",train=False,transform=torchvision.transforms.ToTensor(),download=True)

dataLoader=DataLoader(dataset,batch_size=1)

class Tudui(nn.Module):
    def __init__(self):
        super(Tudui, self).__init__()
        self.model1 = Sequential(
            Conv2d(3, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 32, 5, padding=2),
            MaxPool2d(2),
            Conv2d(32, 64, 5, padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024, 64),
            Linear(64, 10)
        )


    def forward(self,x):
        x=self.model1(x)
        return x
loss=nn.CrossEntropyLoss()
tudui=Tudui()
for data in dataLoader:
    imgs,targets=data
    outputs=tudui(imgs)
    result_loss=loss(outputs,targets)
    result_loss.backward()
    print("ok")
AI 代码解读

在debug中梯度会更新

相关文章
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
生成对抗网络(GAN)的训练效果高度依赖于损失函数的选择。本文介绍了经典GAN损失函数理论,并用PyTorch实现多种变体,包括原始GAN、LS-GAN、WGAN及WGAN-GP等。通过分析其原理与优劣,如LS-GAN提升训练稳定性、WGAN-GP改善图像质量,展示了不同场景下损失函数的设计思路。代码实现覆盖生成器与判别器的核心逻辑,为实际应用提供了重要参考。未来可探索组合优化与自适应设计以提升性能。
104 7
9个主流GAN损失函数的数学原理和Pytorch代码实现:从经典模型到现代变体
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
17 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
228 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
FFmpeg开发笔记(六十)使用国产的ijkplayer播放器观看网络视频
ijkplayer是由Bilibili基于FFmpeg3.4研发并开源的播放器,适用于Android和iOS,支持本地视频及网络流媒体播放。本文详细介绍如何在新版Android Studio中导入并使用ijkplayer库,包括Gradle版本及配置更新、导入编译好的so文件以及添加直播链接播放代码等步骤,帮助开发者顺利进行App调试与开发。更多FFmpeg开发知识可参考《FFmpeg开发实战:从零基础到短视频上线》。
667 2
FFmpeg开发笔记(六十)使用国产的ijkplayer播放器观看网络视频
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
这篇文章详细介绍了如何通过可视化深度学习中每层特征层来理解网络的内部运作,并使用ResNet系列网络作为例子,展示了如何在训练过程中加入代码来绘制和保存特征图。
127 1
目标检测笔记(五):详细介绍并实现可视化深度学习中每层特征层的网络训练情况
基于昇腾用PyTorch实现传统CTR模型WideDeep网络
本文介绍了如何在昇腾平台上使用PyTorch实现经典的WideDeep网络模型,以处理推荐系统中的点击率(CTR)预测问题。
294 66
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
9716 3
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
772 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
基于Pytorch Gemotric在昇腾上实现GraphSage图神经网络
本文详细介绍了如何在昇腾平台上使用PyTorch实现GraphSage算法,在CiteSeer数据集上进行图神经网络的分类训练。内容涵盖GraphSage的创新点、算法原理、网络架构及实战代码分析,通过采样和聚合方法高效处理大规模图数据。实验结果显示,模型在CiteSeer数据集上的分类准确率达到66.5%。
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》
MobileNetV3是谷歌为移动设备优化的神经网络模型,通过神经架构搜索和新设计计算块提升效率和精度。它引入了h-swish激活函数和高效的分割解码器LR-ASPP,实现了移动端分类、检测和分割的最新SOTA成果。大模型在ImageNet分类上比MobileNetV2更准确,延迟降低20%;小模型准确度提升,延迟相当。
163 1
轻量级网络论文精度笔记(三):《Searching for MobileNetV3》

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等