目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)

简介: 这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。

一、目标分类介绍

目标分类是一种监督学习任务,其目标是根据输入数据的特征将其分配到预定义的类别中。这种分类方法在许多实际应用中都有广泛的应用,如垃圾邮件检测、图像识别、情感分析等。

目标分类的基本流程包括:数据预处理(如清洗、标准化)、特征提取、模型选择和训练、模型评估和优化。其中,模型的选择和训练是关键步骤,常见的分类算法有决策树、支持向量机、神经网络等。

目标分类的优点是可以自动地进行分类,无需人工干预,同时也可以通过调整模型参数来提高分类的准确性。但是,目标分类也存在一些挑战,如数据的不平衡问题、过拟合问题等。

1.1 二分类和多分类的区别

二分类是指将样本分为两个类别,多分类是指将样本分为多个类别。在机器学习中,常见的分类算法有决策树、支持向量机、神经网络等。其中,决策树是一种基于规则的分类算法,支持向量机是一种基于间隔最大化的分类算法,神经网络是一种基于非线性映射的分类算法。对于多分类问题,可以采用一对多的模型,即将一个二分类器用于多个类别的预测;也可以采用多对多的模型,即将多个二分类器用于多个类别的预测 。

1.2 单标签和多标签输出的区别

单标签输出是指模型的输出只有一个预测值,即 f (x) = y。多标签输出是指模型的输出具有多个预测值,即 f (x_1,x_2,…,x_n) = y_1, y_2,…,y_n。在多标签分类中,每个输入样本需要零个或多个标签作为输出,同时需要输出 。

二、代码获取

  • 支持自定义数据集训练
  • 支持网络架构:resnet18,resnet50,mobilenet_v2,googlenet
  • 整套训练代码和测试代码(Pytorch版本)
  • 支持多种优化器选择
  • 支持选择多种损失函数:交叉熵、labelSmoothing、BCE等
  • 所有的配置文件写在yaml文件,更方便管理

在这里插入图片描述
在这里插入图片描述

三、数据集准备

在这里插入图片描述

四、环境搭建

安装python、torch、torchvision和pip安装requirements
安装python可以通过anaconda安装虚拟环境,python == 3.7.11
torch和torchvision版本是torch 1.8.0+cpu和torchvision 0.9.0+cpu

参考这篇博客:点击

4.1 环境测试

在这里插入图片描述
在这里插入图片描述

五、模型训练

在这里插入图片描述
然后运行python train.py即可开始训练。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

六、模型测试

在这里插入图片描述
在这里插入图片描述
设置以上五个地方。由于网络真实预测的时候,可能会出现一张图片包含多种分类的目标。考虑到这种情况就不能简单的用argmax来获取最大值的索引了,所以我们应该通过设置阈值来记录相应类别的索引,然后再根据索引回溯到我们原始的目标信息。
修改后的代码如下

      # 单标签分类
      pred_index = np.argmax(prob_scores, axis=1)
      pred_score = np.max(prob_scores, axis=1)

修改为

    def filter_array(self, arr, threshold):
        # 获取满足条件的索引和值
        arr = arr.flatten()
        indices = np.where(arr >= threshold)[0]
        values = arr[indices]
        return indices, values

    pred_index,pred_score = self.filter_array(prob_scores, threshold)

这里的阈值可以直接通过参数来进行设置。

在这里插入图片描述
在这里插入图片描述

6.1 多标签训练-单标签输出结果

如果只需要输出单个目标,需要修改成以下地方
在这里插入图片描述

6.2 多标签训练-多标签输出结果

修改成这样
在这里插入图片描述

目录
相关文章
|
3天前
|
人工智能 搜索推荐 数据管理
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
37 8
|
9天前
|
人工智能 JavaScript 前端开发
自动化测试框架的演进与实践###
本文深入探讨了自动化测试框架从诞生至今的发展历程,重点分析了当前主流框架的优势与局限性,并结合实际案例,阐述了如何根据项目需求选择合适的自动化测试策略。文章还展望了未来自动化测试领域的技术趋势,为读者提供了宝贵的实践经验和前瞻性思考。 ###
|
4天前
|
安全 Ubuntu Linux
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
26 9
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
|
12天前
|
Java 测试技术 API
探索软件测试中的自动化框架选择####
在当今快节奏的软件开发周期中,自动化测试已成为确保产品质量与加速产品迭代的关键策略。本文深入剖析了自动化测试的核心价值,对比分析了市场上主流的自动化测试框架,旨在为项目团队提供选型时的考量因素及实践指南,助力高效构建适应未来变化的自动化测试体系。 ####
|
8天前
|
Java 测试技术 API
探索软件测试中的自动化测试框架
本文深入探讨了自动化测试在软件开发中的重要性,并详细介绍了几种流行的自动化测试框架。通过比较它们的优缺点和适用场景,旨在为读者提供选择合适自动化测试工具的参考依据。
|
11天前
|
jenkins 测试技术 持续交付
自动化测试框架的搭建与实践
在软件开发领域,自动化测试是提升开发效率、确保软件质量的关键手段。本文将引导读者理解自动化测试的重要性,并介绍如何搭建一个基本的自动化测试框架。通过具体示例和步骤,我们将探索如何有效实施自动化测试策略,以实现软件开发流程的优化。
36 7
|
8天前
|
数据管理 jenkins 测试技术
自动化测试框架的设计与实现
在软件开发周期中,测试是确保产品质量的关键步骤。本文通过介绍自动化测试框架的设计原则、组件构成以及实现方法,旨在指导读者构建高效、可靠的自动化测试系统。文章不仅探讨了自动化测试的必要性和优势,还详细描述了框架搭建的具体步骤,包括工具选择、脚本开发、执行策略及结果分析等。此外,文章还强调了持续集成环境下自动化测试的重要性,并提供了实际案例分析,以帮助读者更好地理解和应用自动化测试框架。
|
9天前
|
监控 测试技术 定位技术
探索软件测试中的自动化测试框架选择与实施###
本文不概述传统意义上的摘要内容,而是直接以一段对话形式引入,旨在激发读者兴趣。想象一下,你是一名勇敢的探险家,面前摆满了各式各样的自动化测试工具地图,每张地图都指向未知的宝藏——高效、精准的软件测试领域。我们将一起踏上这段旅程,探讨如何根据项目特性选择合适的自动化测试框架,并分享实施过程中的关键步骤与避坑指南。 ###
19 4
|
8天前
|
敏捷开发 测试技术 持续交付
自动化测试之美:从零开始搭建你的Python测试框架
在软件开发的马拉松赛道上,自动化测试是那个能让你保持节奏、避免跌宕起伏的神奇小助手。本文将带你走进自动化测试的世界,用Python这把钥匙,解锁高效、可靠的测试框架之门。你将学会如何步步为营,构建属于自己的测试庇护所,让代码质量成为晨跑时清新的空气,而不是雾霾中的忧虑。让我们一起摆脱手动测试的繁琐枷锁,拥抱自动化带来的自由吧!
|
9天前
|
测试技术 持续交付 数据安全/隐私保护
软件测试的艺术与科学:探索自动化测试框架
在软件开发的世界中,测试是确保产品质量的关键环节。本文将深入探讨自动化测试框架的重要性和实现方法,旨在为读者揭示如何通过自动化测试提升软件测试效率和准确性。我们将从测试的基本概念出发,逐步引导读者了解自动化测试框架的设计和实施过程,以及如何选择合适的工具来支持测试活动。文章不仅提供理论知识,还将分享实用的代码示例,帮助读者将理论应用于实践。无论你是测试新手还是经验丰富的开发者,这篇文章都将为你打开一扇通往更高效、更可靠软件测试的大门。
14 1