深度学习笔记(五):学习率过大过小对于网络训练有何影响以及如何解决

简介: 学习率是深度学习中的关键超参数,它影响模型的训练进度和收敛性,过大或过小的学习率都会对网络训练产生负面影响,需要通过适当的设置和调整策略来优化。

1.学习率的作用

学习率 (learning rate),作为监督学习以及深度学习中重要的超参,它控制网络模型的学习进度,决定这网络能否成功或者需要多久成功找到全局最小值,从而得到全局最优解,也就是最优参数。换句话说学习率和stride(步长)性质差不多。

2.学习率太大有何影响

首先我们要认识到学习率过大,自然第一反应就是学习的速度或者说忽略了某些阶段直接学到了下一个阶段的东西,这对于计算机来说是不可取的,特别是用于神经网络之中。这就好比在网络模型中我们所需要的最佳的值是50,如果我们学习率正好设置的是50,初始值为0,那么我们可以一步到位,若是设置的是10,多走几步依然可到,但是如果设置的是100,那我们就会直接跳过了50,也就是说忽略了最佳的结果。
那么学习率设置太大会造成网络不能收敛,在最优值附近徘徊,也就是说直接跳过最低的地方跳到对称轴另一边,从而忽视了找到最优值的位置。如下图

在这里插入图片描述

3.学习率太小有何影响

如果学习率设置太小,网络收敛非常缓慢,会增大找到最优值的时间,也就是说从山坡上像蜗牛一样慢慢地爬下去。虽然设置非常小的学习率是可以到达,但是这很可能会进入局部极值点就收敛,没有真正找到的最优解,换句话说就是它步长太小,跨不出这个坑。

在这里插入图片描述

4.如何进行学习率设置

在训练过程中,一般根据训练轮数设置动态变化的学习率。

刚开始训练时:学习率以 0.01 ~ 0.001 为宜。
一定轮数过后:逐渐减缓。
接近训练结束:学习速率的衰减应该在100倍以上。
如果是 迁移学习 ,由于模型已在原始数据上收敛,此时应设置较小学习率 (≤0.0001) 在新数据上进行微调 。

5.学习率缓减机制

  • 方法1.每N轮学习率减半(学习率按训练轮数增长指数差值递减):

在这里插入图片描述

  • 方法2.最常用的是指数衰减,也是最为有效的。tensorflow中的表达式为:
    decayed_lr =lr0*(decay_rate^(global_steps/decay_steps)
    参数解释:
    decayed_lr:衰减后的学习率,也就是当前训练不使用的真实学习率
    lr0: 初始学习率
    decay_rate: 衰减率,每次衰减的比例
    global_steps:当前训练步数
    decay_steps:衰减步数,每隔多少步衰减一次。

方法二中tensorflow对应API:

global_step = tf.Variable(0)
lr = tf.train.exponential_decay(
     lr0,
     global_step,
     decay_steps=lr_step,
     decay_rate=lr_decay,
     staircase=True)

staircase=True 参数是说 global_steps/decay_steps 取整更新,也就是能做到每隔decay_steps学习率更新一次。

  • 方法3.通过引入BN层来解决,由于BN层(也叫归一化层)它可以防止网络中间层在训练过程中国,数据分别发生改变,它和卷积、池化都属于网络层的一种。一般是在网络每一层输入的时候插入一个BN层(归一化为均值为0,方差为1),然后在进入下一层。有了它现在我们可以采用初始很大的学习率,然后学习率的衰减速度也很大,因为BN算法收敛很快。当然这个算法即使你选择了较小的学习率,也比以前的收敛速度快,因为它具有快速训练收敛的特性;
目录
相关文章
|
7天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
21 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
14天前
|
机器学习/深度学习 自然语言处理 并行计算
DeepSpeed分布式训练框架深度学习指南
【11月更文挑战第6天】随着深度学习模型规模的日益增大,训练这些模型所需的计算资源和时间成本也随之增加。传统的单机训练方式已难以应对大规模模型的训练需求。
56 3
|
19天前
|
机器学习/深度学习 搜索推荐 安全
深度学习之社交网络中的社区检测
在社交网络分析中,社区检测是一项核心任务,旨在将网络中的节点(用户)划分为具有高内部连接密度且相对独立的子群。基于深度学习的社区检测方法,通过捕获复杂的网络结构信息和节点特征,在传统方法基础上实现了更准确、更具鲁棒性的社区划分。
33 7
|
20天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习的奥秘:探索神经网络背后的魔法
【10月更文挑战第22天】本文将带你走进深度学习的世界,揭示神经网络背后的神秘面纱。我们将一起探讨深度学习的基本原理,以及如何通过编程实现一个简单的神经网络。无论你是初学者还是有一定基础的学习者,这篇文章都将为你提供有价值的信息和启示。让我们一起踏上这段奇妙的旅程吧!
|
20天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
65 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
21天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
7天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
21 0
|
9天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习的奇迹:如何用神经网络识别图像
【10月更文挑战第33天】在这篇文章中,我们将探索深度学习的奇妙世界,特别是卷积神经网络(CNN)在图像识别中的应用。我们将通过一个简单的代码示例,展示如何使用Python和Keras库构建一个能够识别手写数字的神经网络。这不仅是对深度学习概念的直观介绍,也是对技术实践的一次尝试。让我们一起踏上这段探索之旅,看看数据、模型和代码是如何交织在一起,创造出令人惊叹的结果。
19 0