神经网络学习规则-1| 学习笔记

简介: 快速学习神经网络学习规则-1。

开发者学堂课程【机器学习算法 :神经网络学习规则-1】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/535/detail/7229


神经网络学习规则-1

 

内容介绍

一、学习

二、学习规则类型

 

一、学习

学习是指通过训练使个体在行为上产生较为持久改变的过程,一般来说效果随着训练的增加而提高,即通过学习获得进步。

人工神经网络的功能由其连接的拓扑结构和网络的连接权值决定,网络的连接权值由选择的拓扑结构决定,其全体的权值W整体反映了神经网络对于解决问题的知识存储。确定相关参数的值,以及知识即一旦拓扑结构和权值确定,该网络可以应用于新的数据得到结果。

人工神经网络的学习就是通过对样本的学习训练,不断改变网络的拓扑结构及连接权值,使得输出不断接近期望输出值。

通过训练改变权值的规则被称为学习算法或者学习规则,有时也称作训练规则或者训练算法,学习规则对人工神经网络非常重要。

在做神经网络结构的时候首先确定神经网络结构的拓扑结构,对于有些神经网络结构,还有自组织的功能,可以根据实际情况调整自身的拓扑结构。要有参与学习的样本及算法。

 

二、学习规则类型

按照一般的分类标准,通常分为三类:

1. 有监督学习:学习模式为纠错

不断的给网络提供一个输入极其期望的输出,给予的样本中既含有特征又含有结果,称为教师信号,将ANN的实际输出和期望输出作比较,不符时,按照一定规则调整权值参数,重新计算,比较,直到网络对于给定的输入均能产生期望的输出,则认为该网络训练完成,即已学会样本数据中的知识和规则。得到的网络模型即可用于解决实际问题。

2. 无监督学习:学习模式为自组织

学习时不管给网络提供动态输入信息,网络根据特有的内部结构和学习规则,在输入信息流中发现可能的模式和规律,同时根据网络功能和输入信息调整权值(自组织)。使网络能对属于同一类的模式进行自动分类。该模式网络权值的调整不取决于教师信号,网络的学习评价标准隐含于网络内部。

3. 灌输式学习:学习模式为死记硬背

将网络设计成记忆特别的例子,当输入为该例子时,网络可回忆起该例子。网络权值非训练得到。而是通过某种设计方法得到,权值一旦设计好,即一次灌输给网络,不再变动。

相关文章
|
30天前
|
Ubuntu 网络安全 图形学
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
在Ubuntu 20.04系统中解决网络图标消失和无法连接有线网络问题的方法,其中第三种方法通过检查并确保Windows防火墙中相关服务开启后成功恢复了网络连接。
347 0
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
|
5月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
5月前
|
机器学习/深度学习
【从零开始学习深度学习】37. 深度循环神经网络与双向循环神经网络简介
【从零开始学习深度学习】37. 深度循环神经网络与双向循环神经网络简介
|
29天前
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
34 0
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
【深度学习+面经】Transformer 网络学习笔记
Transformer模型的核心概念、优缺点以及在多个领域的应用,并提供了针对Transformer架构的面试问题及答案。
147 2
|
3月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络不再是黑魔法!Python带你一步步拆解,让AI学习看得见
【8月更文挑战第3天】神经网络,曾被视为难以触及的黑魔法,现已在Python的助力下变得平易近人。以TensorFlow或PyTorch为“魔法杖”,仅需几行Python代码即可构建强大的AI模型。从零开始,我们将教导AI识别手写数字,利用经典的MNIST数据集。通过数据加载、预处理至模型训练与评估,每个步骤都如精心编排的舞蹈般清晰可见。随着训练深入,AI逐渐学会辨认每个数字,其学习过程直观展现。这不仅揭示了神经网络的奥秘,更证明了任何人都能借助Python创造AI奇迹,共同探索未来的无限可能。
44 2
|
3月前
|
机器学习/深度学习 算法 网络架构
神经网络架构殊途同归?ICML 2024论文:模型不同,但学习内容相同
【8月更文挑战第3天】《神经语言模型的缩放定律》由OpenAI研究人员完成并在ICML 2024发表。研究揭示了模型性能与大小、数据集及计算资源间的幂律关系,表明增大任一资源均可预测地提升性能。此外,论文指出模型宽度与深度对性能影响较小,较大模型在更多数据上训练能更好泛化,且能高效利用计算资源。研究提供了训练策略建议,对于神经语言模型优化意义重大,但也存在局限性,需进一步探索。论文链接:[https://arxiv.org/abs/2001.08361]。
43 1
|
4月前
|
机器学习/深度学习 数据采集 监控
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
**神经网络与AI学习概览** - 探讨神经网络设计,包括MLP、RNN、CNN,激活函数如ReLU,以及隐藏层设计,强调网络结构与任务匹配。 - 参数初始化与优化涉及Xavier/He初始化,权重和偏置初始化,优化算法如SGD、Adam,针对不同场景选择。 - 学习率调整与正则化,如动态学习率、L1/L2正则化、早停法和Dropout,以改善训练和泛化。
44 0
算法金 | DL 骚操作扫盲,神经网络设计与选择、参数初始化与优化、学习率调整与正则化、Loss Function、Bad Gradient
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
下一篇
无影云桌面