用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)

简介:

用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)
Google TensorFlow程序员点赞的文章!

 

前言

目录:

  • 向量表示以及它的维度
  • rnn cell
  • rnn 向前传播

重点关注:

  • 如何把数据向量化的,它们的维度是怎么来的
  • 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算

在看本文前,可以先看看这篇文章回忆一下:

吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇)

我们将实现以下结构的RNN,在这个例子中 Tx = Ty。

向量表示以及它的维度

Input with  nx  number of units
对单个输入样本,x(i) 是一维输入向量。
用语言来举个例子,将具有5k个单词词汇量的语言用one-hot编码成具有5k个单位的向量,所以 x(i) 的维度是(5000,)。
我们将用符号 nx 表示单个训练样本的单位数。
Batches of size m
如果我们取小批量(mini-batches),每个批次有20个训练样本。
为了受益于向量化,我们将20个样本 x(i) 变成一个2维数组(矩阵)。
比如一个维度是(5000,20)的向量。
我们用m来表示训练样本的数量。
所以小批量训练数据的维度是 (nx, m)。
Time steps of size Tx
循环神经网络有多个时间步骤,我们用t来表示。
我们将看到训练样本 x(i) 将经历多个时间步骤 Tx, 比如如果有10个时间步骤,那么 Tx = 10。
3D Tensor of shape (nx, m, Tx)
输入x就是用维度是 (nx, m, Tx) 的三维张量来表示。
Taking a 2D slice for each time step:

每一个时间步骤,我们用小批量训练样本(不是单个的训练样本)。
所以针对每个时间步骤t,我们用维度是 (nx, m)的2维切片。
我们把它表示成xt。
隐藏状态a的维度
a的定义: 从一个时间步骤到另一个时间步骤的激活值 at, 我们把它叫做隐藏状态。
同输入张量 x 一样,对于单个训练样本的隐藏状态,它的向量长度是na。
如果我们是包含了m个训练样本的小批量数据,那么小批量维度是 (na, m)。
如果我们把时间步加进去,那么隐藏状态的维度就是 (na, m, Tx)。
我们将用索引t来遍历时间步,每次操作是从3维张量切片成的2维向量。
我们用at来表示2维的切片,它的维度是 (na, m)。
预测值y^的维度
同输入x和隐藏状态一样,y^是一个维度是 (ny, m, Ty) 的3维张量。
ny: 代表预测值的单位数。
m: 小批次训练的样本数量。
Ty: 预测的时间数。
比如单个时间步 t,2维的切片 y^ 的维度是 (ny, m)。
 

RNN cell

 

我们的第一个任务就是执行单个时间步骤的计算,计算如下图。

输入是a^, xt,输出是at, yt^。以下的代码其实就是把上面的公式代码化,总的步骤分成4步:

取出参数。
计算at。
计算yt^。
返回输出的at, yt^,还要存储一些值缓存起来。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
​import numpy as np

def rnn_cell_forward(xt, a_prev, parameters):
    """
    Implements a single forward step of the RNN-cell as described in Figure (2)

    Arguments:
    xt -- your input data at timestep "t", numpy array of shape (n_x, m).
    a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
    parameters -- python dictionary containing:
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias, numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
    Returns:
    a_next -- next hidden state, of shape (n_a, m)
    yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
    cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)
    """
    # 取计算的参数
    Wax = parameters["Wax"]
    Waa = parameters["Waa"]
    Wya = parameters["Wya"]
    ba = parameters["ba"]
    by = parameters["by"]

    # 用公式计算下一个单元的激活值
    a_next = np.tanh(np.dot(Waa, a_prev) + np.dot(Wax, xt) + ba)
    # 计算当前cell的输出
    yt_pred = softmax(np.dot(Wya, a_next) + by)
    
    # 用于向后传播的缓存值
    cache = (a_next, a_prev, xt, parameters)

    return a_next, yt_pred, cache

RNN向前传播

一个循环神经网络就是不断的重复你上面创建的rnn 单元。
如果你的输入数据序列是10个时间步,那么你就要重复你的rnn cell 10次。
在每个时间步中,每个单元将用2个输入:
a: 前一个单元的隐藏状态。
xt: 当前时间步的输入数据。
每个时间步有两个输出:
一个隐藏状态at
一个测值y^⟨t⟩
权重和偏差 (Waa,ba,Wax,bx) 将在每个时间步中循环使用,它们保存在"parameters"的变量中。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
def rnn_forward(x, a0, parameters):
    """
    Implement the forward propagation of the recurrent neural network described in Figure (3).

    Arguments:
    x -- Input data for every time-step, of shape (n_x, m, T_x).
    a0 -- Initial hidden state, of shape (n_a, m)
    parameters -- python dictionary containing:
                        Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
                        Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
                        Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
                        ba --  Bias numpy array of shape (n_a, 1)
                        by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)

    Returns:
    a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
    y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
    caches -- tuple of values needed for the backward pass, contains (list of caches, x)
    """

    # 用于存储所有cache的列表,初始化它
    caches = []

    # 取一些纬度值,用于后面初始化变量
    n_x, m, T_x = x.shape
    n_y, n_a = parameters["Wya"].shape


    # 初始化 a 和 y_pred
    a = np.zeros((n_a, m, T_x))
    y_pred = np.zeros((n_y, m, T_x))

    # 初始化 a_next
    a_next = a0

    # loop over all time-steps of the input 'x'
    for t in range(T_x):
        # Update next hidden state, compute the prediction, get the cache
        xt = x[:,:,t] # 通过切片的方式从输入变量x中取出当前t时间步的输入xt
        a_next, yt_pred, cache = rnn_cell_forward(xt, a_next, parameters)
        # 保存当前单元计算的a_next值

        a[:,:,t] = a_next
        # 保存当前单元的预测值y

        y_pred[:,:,t] = yt_pred
        # 添加每个单元的缓存值
        caches.append(cache)


    # store values needed for backward propagation in cache
    caches = (caches, x)

    return a, y_pred, caches

恭喜你(^▽^),到这里你已经能够从0到1的构建循环神经网络的向前传播过程。

在现代深度学习框架中,您仅需实现前向传递,而框架将处理后向传递,因此大多数深度学习工程师无需理会后向传递的细节。我就不写向后传播了。

原文地址https://www.cnblogs.com/siguamatrix/p/12523600.html

相关文章
|
8天前
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
8天前
|
程序员 开发者 Python
Python网络编程基础(Socket编程) 错误处理和异常处理的最佳实践
【4月更文挑战第11天】在网络编程中,错误处理和异常管理不仅是为了程序的健壮性,也是为了提供清晰的用户反馈以及优雅的故障恢复。在前面的章节中,我们讨论了如何使用`try-except`语句来处理网络错误。现在,我们将深入探讨错误处理和异常处理的最佳实践。
|
1月前
|
数据采集 存储 XML
深入浅出:基于Python的网络数据爬虫开发指南
【2月更文挑战第23天】 在数字时代,数据已成为新的石油。企业和个人都寻求通过各种手段获取互联网上的宝贵信息。本文将深入探讨网络爬虫的构建与优化,一种自动化工具,用于从网页上抓取并提取大量数据。我们将重点介绍Python语言中的相关库和技术,以及如何高效、合法地收集网络数据。文章不仅为初学者提供入门指导,也为有经验的开发者提供进阶技巧,确保读者能够在遵守网络伦理和法规的前提下,充分利用网络数据资源。
|
2月前
|
网络协议 Python
在Python中进行UDP(User Datagram Protocol)网络编程
在Python中进行UDP(User Datagram Protocol)网络编程
30 3
|
2月前
|
机器学习/深度学习 算法 PyTorch
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
44 0
|
2月前
|
网络协议 网络性能优化 Python
在Python中进行TCP/IP网络编程
在Python中进行TCP/IP网络编程
33 6
|
2月前
|
机器学习/深度学习 人工智能 算法
【代数学作业1完整版-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
【代数学作业1完整版-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
56 0
|
2月前
|
机器学习/深度学习 人工智能 算法
【代数学作业1-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
【代数学作业1-python实现GNFS一般数域筛】构造特定的整系数不可约多项式:涉及素数、模运算和优化问题
50 0
|
1天前
|
机器学习/深度学习
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
HAR-RV-J与递归神经网络(RNN)混合模型预测和交易大型股票指数的高频波动率
11 0
|
15天前
|
数据采集 网络协议 API
python中其他网络相关的模块和库简介
【4月更文挑战第4天】Python网络编程有多个流行模块和库,如requests提供简洁的HTTP客户端API,支持多种HTTP方法和自动处理复杂功能;Scrapy是高效的网络爬虫框架,适用于数据挖掘和自动化测试;aiohttp基于asyncio的异步HTTP库,用于构建高性能Web应用;Twisted是事件驱动的网络引擎,支持多种协议和异步编程;Flask和Django分别是轻量级和全栈Web框架,方便构建不同规模的Web应用。这些工具使网络编程更简单和高效。

热门文章

最新文章