Anaconda安装与Python虚拟环境配置保姆级图文教程(附速查字典)

简介: Anaconda安装与Python虚拟环境配置保姆级图文教程(附速查字典)

目录

1 混乱的Python库

你有没有遇到过这样的问题


在项目A中需要用到某个Python库PkgA,且项目A的其他库要求PkgA的版本必须为v3.0以上,你按要求安装了PkgA v3.0;过了一段时间,老板交给你一个项目B,又用到了PkgA,但这次其他库要求PkgA的版本必须为v2.0及以上,这时候你怎么办?


安装PkgA v3.0则新项目B无法运行,安装PkgA v2.0则旧项目A无法运行,要想同时在一个环境里使用两个项目,必须不停地重装PkgA来更换版本。


上面的例子只涉及两个项目的一个依赖库冲突,如果多个项目呢?如果多个依赖冲突呢?


image.png

上面的例子说明了什么呢?其实就是Python语言的痛点:


依赖网复杂


Python的包非常丰富,轮子相当多,开发者在工作时难免会调用这样或那样的包,久而久之,一个功能依赖另一个功能,形成复杂的依赖网络


包管理混乱


通过报错信息不断安装依赖包终于解决了依赖库的问题,但随之而来的就是版本问题,也就是上面例子所体现的依赖冲突,本质上是某个包开发时的不向下兼容导致的


为了解决上面的问题,更好地管理Python库,让其扬长避短,就必须使用环境管理工具,例如本文介绍的Anaconda。

2 什么是Anaconda

Anaconda是一个开源的跨平台Python发行版本,支持


Windows

macOS

Linux

操作系统。Anaconda中包含了conda等180多个科学包及其依赖项。其中conda则是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。


image.png

3 Anaconda的安装

Anaconda下载界面选择相应的操作系统,本文主要介绍在Windows与Linux下的安装流程。


image.png

3.1 Windows系统

Windows有图形化的安装向导,按下面的步骤一步步安装即可

  • 运行安装向导


image.png

  • 选择I Agree

image.png

  • 选择All Users,其实选Just Me也可以,但这台主机的其他用户就无法使用Anaconda

image.png

  • 选择安装路径

image.png

  • 保持默认选项

image.png

  • 等待安装结束

image.png

  • 配置环境变量

image.png

3.2 Linux系统

对于Linux系统,没有图形化的安装界面,按下面输入终端命令即可

  • 进入Anaconda安装目录并运行官方安装程序
bash ./Anaconda3-2021.11-Linux-x86_64.sh

添加环境变量,其中~/Project/anaconda3/bin替换成自己的安装目录

echo 'export PATH="~/Project/anaconda3/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc

3.3 测试

打开cmd(Windows)或Terminal(Linux),输入

conda --version

如果输出版本号则说明安装成功,如下所示。

image.png

注意,若运行python脚本时仍然是原环境而非Anaconda环境,则需要注意配置编辑器的python解释器路径。VSCode中,在tasks.json中的args参数中配置

{
    "version": "2.0.0",
    "tasks": [
        {
            "label": "catkin_make:debug",
            "type": "shell",
            "command": "catkin_make",
            "args": ["-DPYTHON_EXECUTABLE=/home/winter/Project/anaconda3/envs/server/bin/python "],
            "group": {"kind":"build","isDefault":true},
            "presentation": {
                "reveal": "always"
            },
            "problemMatcher": "$msCompile"
        }
    ]
}

4 虚拟环境管理(速查字典)

Anaconda可以创建虚拟环境,虚拟环境间彼此隔离,可以解决依赖混乱的情况。虚拟环境管理主要涉及以下的命令,可以作为速查字典以备不时之需

  • 创建虚拟环境
conda create -n test python=3.8
  • 创建了一个名为test的采用3.8版本Python解释器的虚拟环境
  • 切换虚拟环境
conda activate test
  • 切换到名为test的虚拟环境。默认地,用户会进入Anaconda自带的base环境,注意base环境已经与安装Anaconda前的环境不同,因此第一次使用Anaconda可能会产生依赖冲突和缺失。
  • 查看虚拟环境
conda env list

依赖安装与卸载

# 安装
conda install pkg
pip install pkg
# 卸载
conda remove pkg
pip uninstall pkg

这里推荐使用清华源加快安装速度,使用方法是

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pkg==version 

即安装了名为pkg,版本为version的包

如果依赖很多,建议使用requirements.txt批量配置,命令为

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -r requirements.txt

查看环境依赖

conda list

复制虚拟环境

conda env export > test_env.yaml
conda env create -f test_env.yaml
  • 常用于导出当前虚拟环境的信息或复制虚拟环境
  • 删除虚拟环境
conda remove -n test --all
  • 删除名为test的虚拟环境

🔥 更多精彩专栏

目录
相关文章
|
9天前
|
JSON 数据可视化 API
Python 中调用 DeepSeek-R1 API的方法介绍,图文教程
本教程详细介绍了如何使用 Python 调用 DeepSeek 的 R1 大模型 API,适合编程新手。首先登录 DeepSeek 控制台获取 API Key,安装 Python 和 requests 库后,编写基础调用代码并运行。文末包含常见问题解答和更简单的可视化调用方法,建议收藏备用。 原文链接:[如何使用 Python 调用 DeepSeek-R1 API?](https://apifox.com/apiskills/how-to-call-the-deepseek-r1-api-using-python/)
|
20天前
|
IDE 测试技术 项目管理
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
PyCharm是由JetBrains开发的Python集成开发环境(IDE),专为Python开发者设计,支持Web开发、调试、语法高亮、项目管理、代码跳转、智能提示、自动完成、单元测试和版本控制等功能。它有专业版、教育版和社区版三个版本,其中社区版免费且适合个人和小型团队使用,包含基本的Python开发功能。安装PyCharm前需先安装Python解释器,并配置环境变量。通过简单的步骤即可在PyCharm中创建并运行Python项目,如输出“Hello World”。
189 13
【新手必看】PyCharm2025 免费下载安装配置教程+Python环境搭建、图文并茂全副武装学起来才嗖嗖的快,绝对最详细!
|
1天前
|
JSON Shell 数据格式
使用 pipx 安装并执行 Python 应用程序 (1)
使用 pipx 安装并执行 Python 应用程序 (1)
32 16
|
27天前
|
人工智能 Java Python
python安装、vscode安装、conda安装:一文搞定Python的开发环境(史上最全)
尼恩架构团队推出了一系列《LLM大模型学习圣经》PDF,旨在帮助读者深入理解并掌握大型语言模型(LLM)及其相关技术。该系列包括Python基础、Transformer架构、LangChain框架、RAG架构及LLM智能体等内容,覆盖从理论到实践的各个方面。此外,尼恩还提供了配套视频教程,计划于2025年5月前发布,助力更多人成为大模型应用架构师,冲击年薪百万目标。
|
23天前
|
安全 Linux 网络安全
利用Python脚本自动备份网络设备配置
通过本文的介绍,我们了解了如何利用Python脚本自动备份网络设备配置。该脚本使用 `paramiko`库通过SSH连接到设备,获取并保存配置文件。通过定时任务调度,可以实现定期自动备份,确保网络设备配置的安全和可用。希望这些内容能够帮助你在实际工作中实现网络设备的自动化备份。
48 14
|
1月前
|
Shell Linux iOS开发
使用 pipx 安装并执行 Python 应用程序 (1)
使用 pipx 安装并执行 Python 应用程序 (1)
52 0
使用 pipx 安装并执行 Python 应用程序 (1)
|
2月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
126 80
|
21天前
|
存储 缓存 Java
Python高性能编程:五种核心优化技术的原理与Python代码
Python在高性能应用场景中常因执行速度不及C、C++等编译型语言而受质疑,但通过合理利用标准库的优化特性,如`__slots__`机制、列表推导式、`@lru_cache`装饰器和生成器等,可以显著提升代码效率。本文详细介绍了这些实用的性能优化技术,帮助开发者在不牺牲代码质量的前提下提高程序性能。实验数据表明,这些优化方法能在内存使用和计算效率方面带来显著改进,适用于大规模数据处理、递归计算等场景。
58 5
Python高性能编程:五种核心优化技术的原理与Python代码

热门文章

最新文章