数据可视化大不同!Python数据分析与机器学习中的Matplotlib、Seaborn应用新视角!

简介: 【7月更文挑战第22天】数据可视化在Python数据科学中至关重要,Matplotlib和Seaborn提供强大工具。案例展示如何用它们分析房屋售价数据:Matplotlib绘制面积与售价散点图揭示正相关,Seaborn的pairplot展示多变量关系。在建模阶段,特征重要性通过条形图可视化,辅助模型优化。这两库是理解数据和提升模型性能的关键。

在数据科学与机器学习的广阔领域中,数据可视化不仅是理解数据的第一步,更是洞察数据深层规律、优化模型性能的关键手段。Python作为这一领域的首选语言,其强大的数据可视化库Matplotlib和Seaborn,为数据分析师和机器学习工程师提供了丰富而灵活的工具集。今天,我们将通过一个案例分析,探索Matplotlib与Seaborn在数据分析与机器学习中的新应用视角。

案例背景
假设我们拥有一份关于房屋售价的数据集,包括房屋面积、卧室数量、地理位置等多个特征,以及对应的售价作为目标变量。我们的目标是分析这些特征如何影响房屋售价,并可能进一步构建一个预测模型。在这个过程中,数据可视化将发挥至关重要的作用。

数据分析阶段
步骤一:数据探索

首先,我们使用Matplotlib来绘制房屋面积与售价的散点图,快速了解两者之间的关系。

python
import matplotlib.pyplot as plt
import pandas as pd

假设df是已经加载的DataFrame

plt.figure(figsize=(10, 6))
plt.scatter(df['面积'], df['售价'], alpha=0.5)
plt.xlabel('房屋面积 (平方米)')
plt.ylabel('售价 (万元)')
plt.title('房屋面积与售价的关系')
plt.grid(True)
plt.show()
从图中我们可以初步观察到,房屋面积与售价之间存在正相关关系,但也可能存在其他影响因素。

步骤二:多变量分析

接下来,我们使用Seaborn的pairplot来探索多个变量之间的关系。

python
import seaborn as sns

假设我们只关注面积、卧室数量和售价

sns.pairplot(df[['面积', '卧室数量', '售价']], diag_kind='kde')
plt.show()
pairplot不仅展示了变量间的散点图,还通过密度图(KDE)展示了每个变量的分布情况。这有助于我们更全面地理解数据特征之间的相互作用。

机器学习建模阶段
在确定了数据特征后,我们可能会构建一个预测模型来估算房屋售价。在模型训练过程中,数据可视化同样重要。

步骤三:特征重要性可视化

假设我们使用随机森林模型进行预测,并希望得到特征的重要性排序。虽然Matplotlib和Seaborn不直接提供特征重要性可视化功能,但我们可以利用它们来绘制结果。

python
from sklearn.ensemble import RandomForestRegressor
import numpy as np

假设X_train, y_train是已经划分好的训练集

model = RandomForestRegressor(n_estimators=100)
model.fit(X_train, y_train)

获取特征重要性

importances = model.featureimportances
indices = np.argsort(importances)[::-1]

可视化特征重要性

plt.figure(figsize=(10, 6))
plt.title('特征重要性')
plt.bar(range(X_train.shape[1]), importances[indices],
color="r", align="center")
plt.xticks(range(X_train.shape[1]), X_train.columns[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])
plt.show()
通过上述代码,我们可以直观地看到哪些特征对预测房屋售价最为重要,进而优化模型或进一步探索这些特征背后的原因。

结语
通过本次案例分析,我们看到了Matplotlib和Seaborn在Python数据分析与机器学习中的广泛应用与独特价值。它们不仅帮助我们理解数据的结构与规律,还在模型训练与优化过程中发挥着不可替代的作用。在未来的数据探索与建模旅程中,让我们继续深入挖掘这两个库的潜力,以全新的视角洞察数据的奥秘。

目录
打赏
0
2
3
1
281
分享
相关文章
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
57 1
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
113 0
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
144 8
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
335 1
利用Python实现数据可视化:以Matplotlib和Seaborn为例
【10月更文挑战第37天】本文旨在引导读者理解并掌握使用Python进行数据可视化的基本方法。通过深入浅出的介绍,我们将探索如何使用两个流行的库——Matplotlib和Seaborn,来创建引人入胜的图表。文章将通过具体示例展示如何从简单的图表开始,逐步过渡到更复杂的可视化技术,帮助初学者构建起强大的数据呈现能力。
Python中交互式Matplotlib图表
【10月更文挑战第20天】Matplotlib 是 Python 中最常用的绘图库之一,但默认生成的图表是静态的。通过结合 mpld3 库,可以轻松创建交互式图表,提升数据可视化效果。本文介绍了如何使用 mpld3 在 Python 中创建交互式散点图、折线图和直方图,并提供了详细的代码示例和安装方法。通过添加插件,可以实现缩放、平移和鼠标悬停显示数据标签等交互功能。希望本文能帮助读者掌握这一强大工具。
151 5
如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`)
本文介绍了如何使用Python实现一个交易策略。主要步骤包括:导入所需库(如`pandas`、`numpy`、`matplotlib`),加载历史数据,计算均线和其他技术指标,实现交易逻辑,记录和可视化交易结果。示例代码展示了如何根据均线交叉和价格条件进行开仓、止损和止盈操作。实际应用时需注意数据质量、交易成本和风险管理。
234 5
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
111 2
Python实践:seaborn的散点图矩阵(Pairs Plots)可视化数据
如何快速创建强大的可视化探索性数据分析,这对于现在的商业社会来说,变得至关重要。今天我们就来,谈一谈如何使用python来进行数据的可视化!
15930 0
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等