一键打包,随时运行,Python3项目虚拟环境一键整合包的制作(Venv)

简介: 之前我们介绍了[如何使用嵌入式 Python3 环境给项目制作一键整合包](https://v3u.cn/a_id_328),在使用嵌入式 Python 环境时,通常是作为另一个应用程序的一部分,而Python3虚拟环境是为了在开发过程中隔离项目所需的 Python 环境。虚拟环境允许我们在同一台计算机上的不同项目中使用不同的 Python 版本和软件包,而不会相互干扰。 本次我们利用Python3自带的虚拟环境(venv)功能来给项目制作一键整合包。

dabao.jpg

之前我们介绍了如何使用嵌入式 Python3 环境给项目制作一键整合包,在使用嵌入式 Python 环境时,通常是作为另一个应用程序的一部分,而Python3虚拟环境是为了在开发过程中隔离项目所需的 Python 环境。虚拟环境允许我们在同一台计算机上的不同项目中使用不同的 Python 版本和软件包,而不会相互干扰。

本次我们利用Python3自带的虚拟环境(venv)功能来给项目制作一键整合包。

创建虚拟环境

首先确保本地环境已经安装好了Python3开发环境,如果没有,请移步:一网成擒全端涵盖,在不同架构(Intel x86/Apple m1 silicon)不同开发平台(Win10/Win11/Mac/Ubuntu)上安装配置Python3.10开发环境,囿于篇幅,这里不再赘述。

随后在克隆自己的项目,用于打包,这里我们以Bert-vits2-2.3的项目为例子:

git clone https://github.com/v3ucn/Bert-vits2-V2.3

随后进入项目的根目录:

cd Bert-vits2-V2.3

正常流程下我们会直接执行pip install -r requirements.txt在当前环境下安装依赖。

但是我们现在不使用当前开发环境,而是使用虚拟环境。

首先创建一个虚拟环境的工作目录:

mkdir venv

随后进入venv目录

cd venv

创建独立的虚拟环境:

python -m venv .

该命令python -m venv <目录位置> 可以创建一个独立的Python3运行环境。venv目录里面有python3、pip3等可执行文件,实际上是链接到Python系统目录的软链接。

此时,执行激活命令就可以进入该虚拟环境venv:

E:\work\Bert-vits2-2.3\venv>.\Scripts\activate  

(venv) E:\work\Bert-vits2-2.3\venv>

可以看到,当前命令行的前缀有一个(venv)代表我们现在处于虚拟环境之中。

注意该虚拟环境和当前系统的Python3环境是隔离的。

我们也可也执行命令退出虚拟环境venv:

(venv) E:\work\Bert-vits2-2.3\venv>.\Scripts\deactivate.bat  
E:\work\Bert-vits2-2.3\venv>

通过deactivate命令可以推出虚拟环境。

用虚拟环境venv给项目安装依赖

创建好了虚拟环境之后,我们就可以给当前的项目(Bert-vits2-2.3)安装依赖了:

.\venv\Scripts\pip.exe install -r .\requirements.txt

注意,这里所有的依赖文件都会安装到虚拟环境目录,即venv。

如果愿意,也可以执行命令来升级虚拟环境的pip软件:

.\venv\Scripts\python.exe -m pip install --upgrade pip

完成依赖的安装以后,可以执行命令来查看项目的依赖列表:

E:\work\Bert-vits2-2.3>.\venv\Scripts\pip.exe list  
Package            Version  
------------------ ------------  
certifi            2023.11.17  
charset-normalizer 3.3.2  
colorama           0.4.6  
coloredlogs        15.0.1  
filelock           3.13.1  
flatbuffers        23.5.26  
ftfy               6.1.3  
humanfriendly      10.0  
idna               3.6  
imageio            2.33.1  
Jinja2             3.1.2  
lazy_loader        0.3  
MarkupSafe         2.1.3  
mpmath             1.3.0  
networkx           3.2.1  
numpy              1.23.5  
onnx               1.14.0  
onnxruntime-gpu    1.16.2  
opencv-python      4.7.0.72  
packaging          23.2  
Pillow             9.5.0  
pip                23.0.1  
protobuf           4.23.2  
pyreadline3        3.4.1  
PyWavelets         1.5.0  
regex              2023.12.25  
requests           2.31.0  
scikit-image       0.21.0  
scipy              1.11.4  
setuptools         65.5.0  
sympy              1.12  
tifffile           2023.12.9  
tk                 0.1.0  
torch              2.0.1+cu118  
torchaudio         2.0.2+cu118  
torchvision        0.15.2+cu118  
tqdm               4.66.1  
typing_extensions  4.9.0  
urllib3            2.1.0  
wcwidth            0.2.12

也可以通过pip的show命令来查看依赖的具体位置:

E:\work\Bert-vits2-2.3>.\venv\Scripts\pip.exe show numpy  
Name: numpy  
Version: 1.23.5  
Summary: NumPy is the fundamental package for array computing with Python.  
Home-page: https://www.numpy.org  
Author: Travis E. Oliphant et al.  
Author-email:  
License: BSD  
Location: e:\work\Bert-vits2-2.3\venv\lib\site-packages  
Requires:  
Required-by: imageio, onnx, onnxruntime-gpu, opencv-python, PyWavelets, scikit-image, scipy, tifffile, torchvision

可以看到,这里numpy库就已经被安装到了e:\work\Bert-vits2-2.3\venv\lib\site-packages目录。

随后,我们执行项目中的脚本就可以用虚拟环境来执行,如:

.\venv\Scripts\pip.exe webui.py

如果不想通过命令执行,也可以编写bat脚本:

@echo off  
chcp 65001  

call venv\python.exe webui.py  

@echo 启动完毕,请按任意键关闭  
call pause

至此我们就完成了Bert-vits2-2.3虚拟环境依赖的安装,只需把Bert-vits2-2.3目录压缩,就拿到了一个Bert-vits2-2.3项目的整合包。

嵌入式embed和虚拟环境venv区别

嵌入式embed Python 通常用于将 Python 解释器嵌入到其他应用程序中,以便在应用程序中执行 Python 代码。这种方法常见于需要在应用程序中动态执行脚本或扩展功能的情况。例如,游戏开发中的脚本系统、自定义插件或扩展功能的实现,都可能会使用嵌入式 Python。嵌入式 Python 的优势在于它的轻量级和灵活性,可以根据应用程序的需求进行定制,不需要包含完整的 Python 安装。

虚拟环境venv则用于在同一台计算机上管理多个 Python 项目的依赖关系。每个项目可以有自己独立的虚拟环境,这样可以避免不同项目之间的依赖冲突和版本问题。虚拟环境的应用场景包括:在开发多个项目时,每个项目可以有自己独立的依赖包和 Python 版本;在部署应用程序时,可以确保部署环境与开发环境一致;在测试和维护项目时,可以隔离不同项目的依赖,方便管理和维护。

结语

嵌入式 Python 适用于需要将 Python 作为应用程序的一部分嵌入到其他系统中的场景,而虚拟环境适用于需要在同一台计算机上管理多个 Python 项目的场景。两者在项目开发中有着不同的应用目的和优势,但在整合包制作领域,二者都可以完美实现项目整合包的制作和更新。

相关文章
|
2天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
46 33
|
2月前
|
测试技术 Python
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
|
2月前
|
持续交付 Python
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
|
29天前
|
Python 容器
[oeasy]python048_用变量赋值_连等赋值_解包赋值_unpack_assignment _
本文介绍了Python中变量赋值的不同方式,包括使用字面量和另一个变量进行赋值。通过`id()`函数展示了变量在内存中的唯一地址,并探讨了变量、模块、函数及类类型的地址特性。文章还讲解了连等赋值和解包赋值的概念,以及如何查看已声明的变量。最后总结了所有对象(如变量、模块、函数、类)都有其类型且在内存中有唯一的引用地址,构成了Python系统的基石。
29 5
|
2月前
|
数据可视化 Python
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
|
Python Windows
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(上)
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(上)
|
测试技术 数据库 Python
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(下)
[Python]搭建虚拟环境与Django项目的创建[virtualenv virtualenvwrapper venv](Windows)(下)
|
Shell Python
python虚拟环境(venv、virtualenv)及虚拟环境管理工具(virtualenvwrapper)
&emsp;&emsp;Python应用开发时,本机的Python环境中安装各种各样的包的话,随着项目的增加,每次运行时都需要处理一下各种不同版本的依赖库,而且python版本也可能使用的不同,这样做很耗时。这就需要虚拟出不同的Python版本的环境,可以让虚拟环境专门为某一个应用而存在,且允许在虚拟环境中安装各种包。而且不影响本机大的python环境,便于开发环境和生产环境的管理。
445 0
|
存储 Python
Python - 虚拟环境 venv
Python - 虚拟环境 venv
339 0
Python - 虚拟环境 venv
|
Python
Python3虚拟环境--venv
Python3.3以上的版本通过venv模块原生支持虚拟环境,可以代替之前的virtualenv。 该venv模块提供了创建轻量级“虚拟环境”,提供与系统Python的隔离支持。每一个虚拟环境都有其自己的Python二进制(允许有不同的Python版本创作环境),并且可以拥有自己独立的一套Python包。
2053 0