【玩转数据系列十七】机器学习实现双十一购物清单的自动商品标签归类

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介:

背景

双十一购物狂欢节马上又要到来了,最近各种关于双十一的爆品购物列表在网上层出不穷。如果是网购老司机,一定清楚通常一件商品会有很多维度的标签来展示,比如一个鞋子,它的商品描述可能会是这样的“韩都少女英伦风系带马丁靴女磨砂真皮厚底休闲短靴”。如果是一个包,那么它的商品描述可能是“天天特价包包2016新款秋冬斜挎包韩版手提包流苏贝壳包女包单肩包”。

每个产品的描述都包含非常多的维度,可能是时间、产地、款式等等,如何按照特定的维度将数以万计的产品进行归类,往往是电商平台最头痛的问题。这里面最大的挑战是如何获取每种商品的维度由哪些标签组成,如果可以通过算法自动学习出例如 地点相关的标签有“日本”、“福建”、“韩国”等词语,那么可以快速的构建标签归类体系,本文将借助PAI平台的文本分析功能,实现一版简单的商品标签自动归类系统。

数据说明

数据是在网上直接下载并且整理的一份2016双十一购物清单,一共2千多个商品描述,每一行代表一款商品的标签聚合,如下图:

我们把这份数据导入PAI进行处理,具体数据上传方式可以查阅PAI的官方文档:https://help.aliyun.com/product/30347.html

实验说明

数据上传完成后,通过拖拽PAI的组件,可以生成如下实验逻辑图,每一步的具体功能已经标注:

下面分模块说明下每个部分的具体功能:

1.上传数据并分词

将数据上传,由shopping_data代表底层数据存储,然后通过分词组件对数据分词,分词是NLP的基础操作,这里不多介绍。

2.增加序号列

因为上传的数据只有一个字段,通过增加序号列为每个数据增加主键,方便接下来的计算,处理后数据如下图:

3.统计词频

展示的是每一个商品中出现的各种词语的个数。

4.生成词向量

使用的是word2vector这个算法,这个算法可以将每个词按照意义在向量维度展开,这个词向量有两层含义。

  • 向量距离近的两个词他们的真实含义会比较相近,比如在我们的数据中,“新加坡”和“日本”都表示产品的产地,那么这两个词的向量距离会比较近。
  • 不同词之间的距离差值也是有意义的,比如“北京”是“中国”的首都,“巴黎”是“法国”的首都,在训练量足够的情况下。|中国|-|北京|=|法国|-|巴黎|

经过word2vector,每个词被映射到百维空间上,生成结果如下图展示:

5.词向量聚类

现在已经产生了词向量,接下来只需要计算出哪些词的向量距离比较近,就可以实现按照意义将标签词归类。这里采用kmeans算法来自动归类,聚类结果展示的是每个词属于哪个聚类簇:

结果验证

最后通过SQL组件,在聚类簇中随意挑选一个类别出来,检验下是否将同一类别的标签进行了自动归类,这里选用第10组聚类簇。

看一下第10组的结果:

通过结果中的“日本”、“俄罗斯”、“韩国”、“云南”、“新疆”、“台湾”
等词可以发现系统自动将一些跟地理相关的标签进行了归类,但是里面混入了“男士内裤”、“坚果”等明显与类别不符合的标签,这个很有可能是因为训练样本数量不足所造成的,如果训练样本足够大,那么标签聚类结果会非常准确。

其它

本文案例已经集成到了PAI首页的模板,请注册使用PAI:https://data.aliyun.com/product/learn
在模板中点击创建即可使用,包含逻辑以及数据:

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2月前
|
机器学习/深度学习 人工智能 专有云
人工智能平台PAI使用问题之怎么将DLC的数据写入到另一个阿里云主账号的OSS中
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
22天前
|
监控 数据安全/隐私保护 异构计算
借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
【8月更文挑战第8天】借助PAI-EAS一键部署ChatGLM,并应用LangChain集成外部数据
50 1
|
26天前
|
数据采集 机器学习/深度学习 算法
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
48 2
|
30天前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
97 1
|
15天前
|
机器学习/深度学习 SQL 数据采集
"解锁机器学习数据预处理新姿势!SQL,你的数据金矿挖掘神器,从清洗到转换,再到特征工程,一网打尽,让数据纯净如金,模型性能飙升!"
【8月更文挑战第31天】在机器学习项目中,数据质量至关重要,而SQL作为数据预处理的强大工具,助力数据科学家高效清洗、转换和分析数据。通过去除重复记录、处理缺失值和异常值,SQL确保数据纯净;利用数据类型转换和字符串操作,SQL重塑数据结构;通过复杂查询生成新特征,SQL提升模型性能。掌握SQL,就如同拥有了开启数据金矿的钥匙,为机器学习项目奠定坚实基础。
24 0
|
1月前
|
机器学习/深度学习 数据采集 存储
【2021 年 MathorCup 高校数学建模挑战赛—赛道A二手车估价问题】2 问题一 数据预处理、特征工程及模型训练Baseline 和数据
参加2021年MathorCup高校数学建模挑战赛赛道A二手车估价问题时进行的特征工程步骤,包括缺失值处理、时间特征提取、特定匿名特征的处理、特征存储以及模型训练过程,并提供了相关代码的下载链接。
48 2
|
1月前
|
机器学习/深度学习 数据可视化 搜索推荐
【python机器学习】python电商数据K-Means聚类分析可视化(源码+数据集+报告)【独一无二】
【python机器学习】python电商数据K-Means聚类分析可视化(源码+数据集+报告)【独一无二】
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI使用问题之如何在MaxCompute上使用Protobuf处理数据
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
2月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI使用问题之如何实现数据在MaxCompute中是永久的
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

相关产品

  • 人工智能平台 PAI