【教程】5分钟在PAI算法市场发布自定义算法

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 概述在人工智能领域存在这样的现象,很多用户有人工智能的需求,但是没有相关的技术能力。另外有一些人工智能专家空有一身武艺,但是找不到需求方。这意味着在需求和技术之间需要一种连接作为纽带。今天PAI正式对外发布了“AI市场”以及“PAI自定义算法”两大功能,可以帮助用户5分钟将线下的spark算法或是pyspark算法发布成算法组件,并且支持组件发布到AI市场供更多用户使用。

概述

在人工智能领域存在这样的现象,很多用户有人工智能的需求,但是没有相关的技术能力。另外有一些人工智能专家空有一身武艺,但是找不到需求方。这意味着在需求和技术之间需要一种连接作为纽带。

今天PAI正式对外发布了“AI市场”以及“PAI自定义算法”两大功能,可以帮助用户5分钟将线下的spark算法或是pyspark算法发布成算法组件,并且支持组件发布到AI市场供更多用户使用。有了以上功能,算法开发者和算法需求双方可以基于PAI的开放框架和平台实现算法交易,实现生态和PAI的共融。

详细使用说明

价格说明

使用SQL、SPARK2.0、PYSPARK2.0 3种算法框架自行开发出的算法上传到PAI-STUDIO中,运行产生的费用按照PAI资源成本价收取,费用为1元/计算时。

功能详解

1.控制台说明

首先进入PAI控制台,找到Studio-可视化建模下的“算法发布”功能。

2.开发算法代码

基于本地调试文档,开发算法包。本文使用官方提供的pyspark案例介绍。

3.点击“创建自定义算法”

  • 算法名称:算法组件的名字
  • 算法唯一标示:算法的后台唯一标识,可以用来查询日志等信息
  • 算法框架:sql、spark、pyspark
  • 算法包:如果是sql算法,需要上传sql脚本。spark算法提交的是打包好的jar包。pyspark提交的是工程打包好的zip文件
  • 算法种类:算法包发布到PAI-STUDIO后所在的文件夹
  • 入口参数:sql组件不需要、spark需要写jar包的入口类(例:com.aliyun.odps.spark.examples.simhash.SimHashSpark)、pyspark需要写入口的py文件和入口函数(中间用.分隔)

本文使用官方提供的pyspark算法包,上传pyspark.zip文件,输入入口文件和入口函数

read_example.mainFunc

如图:

4.编辑版本

提交算法包后,在控制台可以看到算法包实例,这时候需要为算法包配置UI展示相关内容。

这里的版本指的是组件的UI展示形式,只有配置了版本的才可以发布。

点击添加版本:

点击前往配置进入组件配置界面,所有算法组件的配置可以通过拖拽的形式可视化操作。

5.组件UI编辑

组件的输入和输出桩可以在下图部分自由控制,本案例实现的是读一个表然后把其中两个字段写到另一个表里,对应代码中的inputTable1和outputTable1,如果多个输入输出桩可以在代码中定义inputTable2、inputTable3等,组件桩会自动映射。

    #定义输入节点
    INPUT_TABLE = arg_dict["inputTable1"]
    OUTPUT_TABLE = arg_dict["outputTable1"]
    ID_COL = arg_dict["idCol"]
    CONTENT_COL = arg_dict["contentCol"]

本案例只使用了一个输入和一个输出,这部分不需要修改。

接下来编辑配置信息,在上述代码中除了inputTable和outputTable这两个参数,剩下的所有参数都要对应到组件的基础控件。本案例中idCol和contentCol两个参数对应的是输入表中选择的两个字段,都是单选。在左侧基础控件中找到“单字段填写控件”,因为是两个参数,所以拖两个出来。

单击第一个控件,在右侧基础信息中进行配置。

  • Name(必选项):算法代码中参数的映射项,本案例应该写idCol。设置好后,说明算法代码中拿到的idCol信息就是该组件的输入
  • 标签:该控件的展示名
  • converter:一般不用填写
  • 绑定输入/输出:组件输入输出桩的绑定,本案例选择输入#1
  • 支持的数据类型:默认全部支持

分别配置两个控件的信息对应到idCol和contentCol。

6.发布组件

编辑好UI版本,记得点击下方的保存按钮。

回到控制台,刷新页面,点击“使用此版本”

这时候组件就可以发布了,

发布分两种:

  • 发布到PAI-STUDIO:发布到PAI-STUDIO需要选择区域和项目,发布过去的组件只能在当前项目下使用,并且主子账号共享
  • 发布到数加智能市场:生成的组件会发布到AI市场,供所有PAI用户下载使用

7.组件调用

进入组件发布的PAI-STUDIO项目,在左侧“组件”tab下找到“自定义算法”文件夹,可以找到发布的算法并使用

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
2月前
|
机器学习/深度学习 算法 搜索推荐
从理论到实践,Python算法复杂度分析一站式教程,助你轻松驾驭大数据挑战!
【10月更文挑战第4天】在大数据时代,算法效率至关重要。本文从理论入手,介绍时间复杂度和空间复杂度两个核心概念,并通过冒泡排序和快速排序的Python实现详细分析其复杂度。冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1);快速排序平均时间复杂度为O(n log n),空间复杂度为O(log n)。文章还介绍了算法选择、分而治之及空间换时间等优化策略,帮助你在大数据挑战中游刃有余。
63 4
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
2月前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
2月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
63 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
2月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
2月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
25天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
2月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
2月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)

相关产品

  • 人工智能平台 PAI