混合循环发电场输出电力预测

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 前言机器学习很多时候在工业场景下也会有非常好的应用。本次实验,我们就会以一个综合循环发电厂的发电数据来展示机器学习是如何应用到工业生产的实际场景中的。 本实验数据采集自 UCI 机器学习数据集中的 混合发电厂数据。

前言

机器学习很多时候在工业场景下也会有非常好的应用。本次实验,我们就会以一个综合循环发电厂的发电数据来展示机器学习是如何应用到工业生产的实际场景中的。

本实验数据采集自 UCI 机器学习数据集中的 混合发电厂数据。对于发电厂来说,风力发电的输出电力很大情况下决定了单位发电机能够生产的电能。因此,通过收集系统各个相关指标来预测最终的输出电力对于发电厂来说是非常有帮助的。有效的预测发电机的输出电力可以更好的评估安排电力生产计划,避免资源的浪费。

载入数据并进行数据探索

载入好数据集之后,里面是一个综合循环发电场的数据,一共有9568个样本数据。每个数据有5列,分别为:AT(温度), V(压力), AP(湿度), RH(压强), PE(输出电力)。下面是数据预览的截图:

_

然后为了找出对 PE 输出电力影响最大的因素,我们可以从左侧 组件-统计分析 拖入相关系数矩阵这个组件,来观察各个特征对于输出电力。

_

右键单击完成的组件,选择查看分析报告,就可以得到我们的相关性分析了。从这张相关性图中,我们不难看到和 输出电力最相关的因素就是 温度,其次是 压力,然后是湿度,再然后是压强。

对数据进行建模

观察完数据相关性之后,我们可以通过 组件-数据预处理 中的拆分组件 对数据做一次拆分,将数据分为训练集和测试集。然后再使用 组件-机器学习-回归 中的线性回归 来对我们的数据进行回归建模。这里我们需要选择我们的特征列(X)和我们的标签列(Y)

_

对回归模型进行预测和评估

建模完毕之后,我们可以通过 组件-机器学习 中的预测来预测该模型在测试数据集上的效果。只需要进行如下的配置即可 特征列我们选择 at,v,ap,rh 原样输出列我们全选即可。

_

我们在这一步完成之后可以右键模型,点击查看模型 即可看到不同的特征对于我们的结果量的权重

最后,再从左侧的 组件-机器学习-评估 中选择回归模型评估即可获得我们的模型效果。右键 回归模型评估-查看分析报告 即可发现我们的 RMSE 到达了 4.57。下面是整个实验完成后的截图

_

这样我们就通过线性回归模型建立了一个混合发电厂的发电电力预测模型。通过模型部署之后,我们就可以实时的为发电厂提供发电电力的预估,以便更好的安排电力的生产计划,避免资源浪费。

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
目录
相关文章
|
6月前
|
机器学习/深度学习 数据采集 人工智能
人工智能平台PAI产品使用合集之在使用ARIMA模型预测时,目标是预测输出12个值,但只打印了5个值,是什么原因
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
算法 调度
基于变异混合蛙跳算法的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
**摘要:** 实现变异混合蛙跳算法的MATLAB2022a版车间调度优化程序,支持动态调整工件和机器数,输出甘特图。核心算法结合SFLA与变异策略,解决Job-Shop Scheduling Problem,最小化总完成时间。SFLA模拟蛙群行为,分组进行局部搜索和全局信息交换。变异策略增强全局探索,避免局部最优。程序初始化随机解,按规则更新,经多次迭代和信息交换后终止。
|
6月前
|
机器学习/深度学习 人工智能 并行计算
从LLM中完全消除矩阵乘法,效果出奇得好,10亿参数跑在FPGA上接近大脑功耗
【6月更文挑战第15天】`Scalable MatMul-free LMs提出了一种无需矩阵乘法的新方法,使用MLGRU和MatMul-free GLU在保持性能的同时降低计算成本。实验显示,这种模型在FPGA上运行时,能效接近人脑,且在多种任务中与传统模型相当甚至更优。尽管有挑战,但该模型为高效、低功耗的语言处理开辟了新途径。[arXiv:2406.02528]`
149 1
|
6月前
|
算法 调度
基于PPNSA+扰动算子的车间调度最优化matlab仿真,可以任意调整工件数和机器数,输出甘特图
`MATLAB2022a`仿真实现PPNSA+扰动算子的车间调度优化,支持工件和机器数量调整,输出甘特图与收敛曲线。算法针对JSSP,采用启发式策略应对NP难问题,最小化最大完工时间。[图:算法流程示意图]
配电网三相不平衡潮流计算【隐式Zbus高斯法】【可设定变压器数量、位置、绕组方式】
配电网三相不平衡潮流计算【隐式Zbus高斯法】【可设定变压器数量、位置、绕组方式】
|
7月前
|
存储 人工智能 数据可视化
【视频】广义相加模型(GAM)在电力负荷预测中的应用(上)
【视频】广义相加模型(GAM)在电力负荷预测中的应用
|
7月前
|
数据可视化 测试技术
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
R语言线性混合效应模型(固定效应&随机效应)和交互可视化3案例
|
7月前
|
移动开发 数据可视化
R语言两层2^k析因试验设计(因子设计)分析工厂产量数据和Lenth方法检验显著性可视化|数据分享(二)
R语言两层2^k析因试验设计(因子设计)分析工厂产量数据和Lenth方法检验显著性可视化|数据分享(二)
|
7月前
|
数据可视化
R语言两层2^k析因试验设计(因子设计)分析工厂产量数据和Lenth方法检验显著性可视化|数据分享(一)
R语言两层2^k析因试验设计(因子设计)分析工厂产量数据和Lenth方法检验显著性可视化|数据分享(一)
带你读《5G大规模天线增强技术》——2.4.6 大尺度参数计算
带你读《5G大规模天线增强技术》——2.4.6 大尺度参数计算

热门文章

最新文章