揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?

简介: 【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。

在当今这个数据驱动的时代,机器学习作为人工智能的一个重要分支,正日益渗透到我们生活的方方面面。从智能推荐系统到自动驾驶汽车,从语音识别到图像处理,机器学习的应用无处不在。而这一切的基础,都离不开高质量的数据。那么,如何有效地收集这些数据呢?本文将通过一个实际案例,探讨数据收集的方法和技巧。

以某电商平台的个性化推荐系统为例,该系统旨在根据用户的浏览历史、购买记录等数据,为用户推荐他们可能感兴趣的商品。为了实现这一目标,我们需要收集大量的用户行为数据。

明确数据需求是关键。在这个案例中,我们需要收集的数据包括但不限于用户的ID、浏览记录、点击率、停留时间、购买记录等。明确了数据需求后,我们就可以开始着手收集数据了。

选择合适的数据来源至关重要。对于电商平台而言,数据主要来源于服务器日志、数据库以及第三方数据提供商。服务器日志记录了用户在网站上的所有操作,包括页面访问、点击事件等;数据库则存储了用户的个人信息和交易记录;第三方数据提供商则可以提供额外的用户画像数据,如年龄、性别、地域等。

接下来,我们需要编写代码来自动化地收集这些数据。以Python为例,我们可以使用requests库来抓取网页内容,BeautifulSoup库来解析HTML结构,提取出所需的信息。同时,我们还可以利用pandas库来处理和存储数据。

import requests
from bs4 import BeautifulSoup
import pandas as pd

# 获取网页内容
url = "https://www.example.com/user/123"
response = requests.get(url)
html_content = response.text

# 解析HTML结构
soup = BeautifulSoup(html_content, 'html.parser')
user_id = soup.find('div', {
   'class': 'user-info'}).text.split(':')[1].strip()
browse_history = [item.text for item in soup.find_all('div', {
   'class': 'browse-item'})]

# 存储数据到DataFrame
data = {
   'UserID': user_id, 'BrowseHistory': browse_history}
df = pd.DataFrame(data)

收集到数据后,还需要对数据进行清洗和预处理。这包括去除重复值、填充缺失值、标准化数值范围等。此外,为了提高模型的准确性,我们还需要对数据进行特征工程,提取出有价值的信息。

最后,将处理好的数据划分为训练集和测试集,以便后续的模型训练和评估。在这个过程中,我们可以使用sklearn库中的train_test_split函数来实现数据的随机划分。

from sklearn.model_selection import train_test_split

# 假设X为特征矩阵,y为目标变量
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

通过以上步骤,我们就完成了从数据收集到预处理的全过程。当然,这只是一个简单的示例,实际应用中可能会面临更多的挑战和问题。但只要我们掌握了正确的方法和技巧,就能够高效地收集到机器学习所需的数据,为模型的训练和优化打下坚实的基础。

相关文章
|
2月前
|
存储 人工智能 Kubernetes
AI 场景深度优化!K8s 集群 OSSFS 2.0 存储卷全面升级,高效访问 OSS 数据
阿里云对象存储OSS是一款海量、安全、低成本、高可靠的云存储服务,是用户在云上存储的高性价比选择…
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
AI 基础知识从-1到0.1:带你走进机器学习的世界
本系列文章梳理AI基础概念,从机器学习、深度学习到Transformer和GPT模型,帮助读者理解关键技术和实现原理。内容涵盖数据分类、特征工程、监督与无监督学习等,适合初学者入门和开发者进阶学习。
AI 基础知识从-1到0.1:带你走进机器学习的世界
|
4天前
|
存储 机器学习/深度学习 人工智能
阿里云ODPS:在AI浪潮之巅,铸就下一代智能数据根基
在智能爆炸时代,ODPS正从传统数据平台进化为“AI操作系统”。面对千亿参数模型与实时决策挑战,ODPS通过流批一体架构、多模态处理、智能资源调度等技术创新,大幅提升效率与智能化水平。从自动驾驶到医疗联合建模,从数字孪生到低代码AI开发,ODPS正重塑企业数据生产力,助力全球客户在算力洪流中抢占先机。
25 1
|
1月前
|
机器学习/深度学习 PyTorch API
昇腾AI4S图机器学习:DGL消息传递接口的PyG替换
DGL (Deep Graph Learning) 和 PyG (Pytorch Geometric) 是两个主流的图神经网络库,它们在API设计和底层实现上有一定差异,在不同场景下,研究人员会使用不同的依赖库,昇腾NPU对PyG图机器学习库的支持亲和度更高,因此有些时候需要做DGL接口的PyG替换。
|
1月前
|
数据采集 人工智能 自然语言处理
AI重构数据价值链,解码「智能问数」如何赋能医药制造
随着中国医药制造业的蓬勃发展,中国已跃居全球第二大医药市场。随着监管政策的深入实施,市场对医药企业在生产、运营、管理等方面提出了更为严苛的要求。2025年政府工作报告明确提出,持续推进“人工智能+”行动,将数字技术与制造优势、市场优势更好结合起来,支持大模型广泛应用。
167 26
|
16天前
|
人工智能 Cloud Native 数据管理
海外上新|阿里云瑶池全新发布AI数据准备能力,显著降低AI开发门槛
2025阿里云国际峰会在新加坡举行,宣布设立首个AI全球能力中心,并推出多款云与AI产品,加速技术国际化。会上展示瑶池数据库全面升级,集成Data+AI能力,助力企业智能转型。
|
2月前
|
存储 人工智能 测试技术
AI 场景深度优化!K8s 集群 OSSFS 2.0 存储卷全面升级,高效访问 OSS 数据
OSSFS 2.0通过轻量化协议设计、协程化技术及FUSE3低级API重构,实现大文件顺序读写与小文件高并发加载的显著提升,在实际测试中表现出高达数十倍的吞吐量增长。适用于机器学习训练、推理等对高带宽低延迟要求严苛的场景,同时支持静态和动态挂载方式,方便用户在ACK集群中部署使用。
297 34