谷歌提出视觉记忆方法,让大模型训练数据更灵活

简介: 谷歌研究人员提出了一种名为“视觉记忆”的方法,结合了深度神经网络的表示能力和数据库的灵活性。该方法将图像分类任务分为图像相似性和搜索两部分,支持灵活添加和删除数据、可解释的决策机制以及大规模数据处理能力。实验结果显示,该方法在多个数据集上取得了优异的性能,如在ImageNet上实现88.5%的top-1准确率。尽管有依赖预训练模型等限制,但视觉记忆为深度学习提供了新的思路。

在深度学习领域,训练一个神经网络通常是一个“一锤定音”的过程,类似于将知识雕刻在石头上:一旦训练完成,几乎不可能编辑网络中的知识,因为所有信息都分布在网络的权重中。然而,谷歌的研究人员提出了一种简单而引人注目的替代方案,即将深度神经网络的表示能力与数据库的灵活性相结合。

谷歌的研究人员提出了一种名为“视觉记忆”的方法,该方法将图像分类任务分解为两个部分:图像相似性(由预训练的嵌入提供)和搜索(通过从知识数据库中快速检索最近邻)。通过这种方式,他们构建了一个简单而灵活的视觉记忆系统,具有以下关键能力:

  1. 灵活添加数据的能力:从单个样本到整个类别,甚至数十亿规模的数据,都可以灵活添加。
  2. 删除数据的能力:可以通过“机器遗忘”和内存修剪来删除数据。
  3. 可解释的决策机制:可以干预以控制其行为。

这些能力共同展示了显式视觉记忆的好处。研究人员希望这能为关于如何在深度视觉模型中表示知识的讨论做出贡献,而不仅仅是将知识“雕刻”在权重中。

视觉记忆方法具有以下几个优势:

  1. 灵活性:视觉记忆可以灵活地添加和删除数据,这对于处理不断变化的数据需求非常有用。例如,当新的数据集或类别可用时,可以轻松地将它们添加到视觉记忆中,而当某些数据变得过时或不安全时,可以将其删除。
  2. 可解释性:视觉记忆的决策机制是可解释的,这意味着可以理解和干预其行为。这对于确保模型的公平性和透明度非常重要。
  3. 可扩展性:视觉记忆可以扩展到数十亿规模的数据,而不需要额外的训练。这对于处理大规模数据集非常有用。

研究人员在多个数据集上进行了实验,包括ImageNet和iNaturalist,并取得了令人印象深刻的结果。例如,他们使用视觉记忆方法在ImageNet上实现了88.5%的top-1准确率,这比之前的DinoV2 ViT-L14 kNN和线性探测方法都更好。

此外,研究人员还展示了视觉记忆在处理新类别和大规模数据方面的灵活性。例如,他们将64个新类别添加到ImageNet训练集的视觉记忆中,并实现了87%的top-1准确率,而没有对模型进行任何训练。

尽管视觉记忆方法具有许多优势,但也有一些限制和挑战需要考虑:

  1. 对预训练模型的依赖:视觉记忆方法依赖于预训练的嵌入模型,这意味着如果数据分布发生较大变化,可能需要更新嵌入模型。
  2. 计算成本:虽然视觉记忆可以灵活地添加和删除数据,但在某些情况下,可能需要进行大量的计算来更新内存。
  3. 数据质量:视觉记忆的性能取决于数据的质量和多样性。如果数据质量较差或多样性不足,可能会影响视觉记忆的性能。

论文地址:https://arxiv.org/pdf/2408.08172

目录
相关文章
|
8天前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
41 1
|
2月前
|
机器学习/深度学习 数据采集 数据挖掘
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
因果推断方法为特征工程提供了一个更深层次的框架,使我们能够区分真正的因果关系和简单的统计相关性。这种方法在需要理解干预效果的领域尤为重要,如经济学、医学和市场营销。
69 1
特征工程在营销组合建模中的应用:基于因果推断的机器学习方法优化渠道效应估计
|
2月前
|
机器学习/深度学习 存储 人工智能
揭秘机器学习背后的神秘力量:如何高效收集数据,让AI更懂你?
【10月更文挑战第12天】在数据驱动的时代,机器学习广泛应用,从智能推荐到自动驾驶。本文以电商平台个性化推荐系统为例,探讨数据收集方法,包括明确数据需求、选择数据来源、编写代码自动化收集、数据清洗与预处理及特征工程,最终完成数据的训练集和测试集划分,为模型训练奠定基础。
52 3
|
2月前
|
机器学习/深度学习 算法 Python
“探秘机器学习的幕后英雄:梯度下降——如何在数据的海洋中寻找那枚失落的钥匙?”
【10月更文挑战第11天】梯度下降是机器学习和深度学习中的核心优化算法,用于最小化损失函数,找到最优参数。通过计算损失函数的梯度,算法沿着负梯度方向更新参数,逐步逼近最小值。常见的变种包括批量梯度下降、随机梯度下降和小批量梯度下降,各有优缺点。示例代码展示了如何用Python和NumPy实现简单的线性回归模型训练。掌握梯度下降有助于深入理解模型优化机制。
30 2
|
2月前
|
机器学习/深度学习
如何用贝叶斯方法来解决机器学习中的分类问题?
【10月更文挑战第5天】如何用贝叶斯方法来解决机器学习中的分类问题?
|
2月前
|
机器学习/深度学习 算法 API
机器学习入门(六):分类模型评估方法
机器学习入门(六):分类模型评估方法
|
2月前
|
机器学习/深度学习 算法 搜索推荐
机器学习入门(四):距离度量方法 归一化和标准化
机器学习入门(四):距离度量方法 归一化和标准化
|
3月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
2月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
35 0
|
3月前
|
机器学习/深度学习 数据采集 算法
利用未标记数据的半监督学习在模型训练中的效果评估
本文将介绍三种适用于不同类型数据和任务的半监督学习方法。我们还将在一个实际数据集上评估这些方法的性能,并与仅使用标记数据的基准进行比较。
238 8