人工智能平台PAI产品使用合集之机器学习PAI EasyRec训练时,怎么去除没有意义的辅助任务的模型,用于部署

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:机器学习PAI EasyRec训练时,如何导出直接去除这些没有意义的辅助任务的模型,用于部署?

机器学习PAI EasyRec训练时,多个辅助任务提高训练效果。如何导出直接去除这些没有意义的辅助任务的模型,用于部署?有简便方式吗?



参考答案:

可以使用PLE(Progressive Layered Extraction)来导出直接去除没有意义的辅助任务的模型,用于部署。PLE是一种解决多任务学习中跷跷板现象的方法,可以提升一部分任务的效果而不影响其他任务。通过逐层提取的方式,PLE可以得到一个只包含有意义任务的模型。具体的配置说明可以参考PLE的配置说明文档。使用PLE可以简化导出模型的过程,提高部署的效率。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566706



问题二:机器学习PAI EasyRec Processor 这个是没有开源的是吧?

机器学习PAI EasyRec Processor 这个是没有开源的是吧?



参考答案:

是的,PAI EasyRec Processor 并没有开源。不过,PAI EasyRec 是一个开源的推荐模型自动化工作流,可以帮助用户快速、高效地构建推荐模型。PAI EasyRec 提供了一套完整的推荐模型开发流程,包括数据准备、特征工程、模型训练和模型评估,并且提供了丰富的模型算法和预训练模型。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566705



问题三:想问下机器学习PAI,这里有2.8吗?

想问下机器学习PAI,datascience-registry.cn-beijing.cr.aliyuncs.com/tensorflow/tensorflow:2.10.0

这里有2.8吗?

想构建一个其他tf版本的镜像



参考答案:

https://help.aliyun.com/zh/pai/user-guide/public-images



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566704



问题四:机器学习PAI用easyrec组件化实现模型,加载下来用相同的样本输入多次,是有什么随机过程吗?

请教下机器学习PAI用easyrec组件化实现模型,加载下来用相同的样本输入多次,得到不同的输出,但是差距不大,是有什么随机过程吗?内置模型没发现相同问题,用组件化搭了一个模型出来,训练好了然后加载出来,用同一条样本去测试,多次打分的结果不一致,千分位万分位的差异,就是没法用一条样本复现相同的打分



参考答案:

我理解影响应该不大



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566703



问题五:机器学习PAI 是放在holo里面好还是放在redis里面好吗?

机器学习PAI i2c这种lookup feature交叉特征从线上性能的角度 是放在holo里面好还是放在redis里面好吗?



参考答案:

用fg在线交叉比较好



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/566665

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
19天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
57 1
|
3月前
|
开发者 算法 虚拟化
惊爆!Uno Platform 调试与性能分析终极攻略,从工具运用到代码优化,带你攻克开发难题成就完美应用
【8月更文挑战第31天】在 Uno Platform 中,调试可通过 Visual Studio 设置断点和逐步执行代码实现,同时浏览器开发者工具有助于 Web 版本调试。性能分析则利用 Visual Studio 的性能分析器检查 CPU 和内存使用情况,还可通过记录时间戳进行简单分析。优化性能涉及代码逻辑优化、资源管理和用户界面简化,综合利用平台提供的工具和技术,确保应用高效稳定运行。
83 0
|
3月前
|
前端开发 开发者 设计模式
揭秘Uno Platform状态管理之道:INotifyPropertyChanged、依赖注入、MVVM大对决,帮你找到最佳策略!
【8月更文挑战第31天】本文对比分析了 Uno Platform 中的关键状态管理策略,包括内置的 INotifyPropertyChanged、依赖注入及 MVVM 框架。INotifyPropertyChanged 方案简单易用,适合小型项目;依赖注入则更灵活,支持状态共享与持久化,适用于复杂场景;MVVM 框架通过分离视图、视图模型和模型,使状态管理更清晰,适合大型项目。开发者可根据项目需求和技术栈选择合适的状态管理方案,以实现高效管理。
43 0
|
3月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
全面解析TensorFlow Lite:从模型转换到Android应用集成,教你如何在移动设备上轻松部署轻量级机器学习模型,实现高效本地推理
【8月更文挑战第31天】本文通过技术综述介绍了如何使用TensorFlow Lite将机器学习模型部署至移动设备。从创建、训练模型开始,详细演示了模型向TensorFlow Lite格式的转换过程,并指导如何在Android应用中集成该模型以实现预测功能,突显了TensorFlow Lite在资源受限环境中的优势及灵活性。
231 0
|
4天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
5天前
|
人工智能 算法 安全
人工智能在医疗诊断中的应用与前景####
本文旨在探讨人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战以及未来的发展趋势。随着科技的不断进步,AI技术正逐步渗透到医疗行业的各个环节,尤其在提高诊断准确性和效率方面展现出巨大潜力。通过分析当前AI在医学影像分析、疾病预测、个性化治疗方案制定等方面的实际应用案例,我们可以预见到一个更加智能化、精准化的医疗服务体系正在形成。然而,数据隐私保护、算法透明度及伦理问题仍是制约其进一步发展的关键因素。本文还将讨论这些挑战的可能解决方案,并对AI如何更好地服务于人类健康事业提出展望。 ####
|
4天前
|
机器学习/深度学习 人工智能 算法
人工智能在医疗诊断中的应用与挑战
本文探讨了人工智能(AI)在医疗诊断领域的应用及其面临的挑战。随着技术的不断进步,AI已经在医学影像分析、疾病预测和个性化治疗等方面展现出巨大潜力。然而,数据隐私、算法透明度以及临床整合等问题仍然是亟待解决的关键问题。本文旨在通过分析当前AI技术在医疗诊断中的具体应用案例,探讨其带来的优势和潜在风险,并提出相应的解决策略,以期为未来AI在医疗领域的深入应用提供参考。
27 3
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能在教育领域的应用与挑战
随着科技的不断进步,人工智能(AI)技术已经深入到社会的各个领域,其中教育领域尤为突出。本文旨在探讨人工智能在教育领域的应用现状、面临的挑战以及未来的发展趋势。通过分析AI技术如何改变传统教学模式,提高教育质量和效率,同时指出其在实际应用中可能遇到的问题和挑战,为未来教育的发展提供参考。
32 2
|
10天前
|
机器学习/深度学习 人工智能 搜索推荐
深度探索人工智能在医疗影像诊断中的应用与挑战####
本文深入剖析了人工智能(AI)技术,特别是深度学习算法在医疗影像诊断领域的创新应用,探讨其如何重塑传统诊断流程,提升诊断效率与准确性。同时,文章也客观分析了当前AI医疗影像面临的主要挑战,包括数据隐私、模型解释性及临床整合难题,并展望了未来发展趋势。 ####
|
8天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在医疗诊断中的应用
【10月更文挑战第36天】随着人工智能技术的飞速发展,其在各行各业的应用日益广泛,特别是在医疗领域。本文将深入探讨AI技术如何革新传统医疗诊断流程,提高疾病预测的准确性,以及面临的挑战和未来发展方向。通过具体案例分析,我们将看到AI如何在提升医疗服务质量、降低医疗成本方面发挥关键作用。
81 58

相关产品

  • 人工智能平台 PAI