人工智能平台PAI操作报错合集之任务重启后出现模型拆分报错,该怎么办

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:请问机器学习PAI的easyrec的predict任务为什么不支持lifecycle参数呀?

请问机器学习PAI的easyrec的predict任务为什么不支持lifecycle参数呀? 报这个错:FAILED: ODPS-1220061: Invalid parameter in HTTP request - error msg: CreateInstance Failed : kInvalidArgument:Parameter lifecyle could not be supported. Please check the spelling or remove those parameters from inputs.



参考答案:

你把-Dlifecyle=90 去掉试试,命令的lifecycle 拼写有问题



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589100



问题二:机器学习PAI这种情况该怎么处理比较好?我现在用的final,任务是T+1执行的,偶尔会因为资源紧张

机器学习PAI这种情况该怎么处理比较好?我现在用的final,任务是T+1执行的,偶尔会因为资源紧张失败,我现在想在失败时设置重启,但重启final会有多个模型,这时候拆分就会报错。



参考答案:

应该用final。final是训练完成才导出的,失败是不导出的,失败重启不会产生应该多个模型。你是不是训练命令下面还有别的命令失败了,这个DW Node重跑,就导致训练命令其实成功了,又启动了一遍,拆开成多个节点,每个节点管自己命令的重跑就应该不会有这种问题。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/588642



问题三:机器学习PAI这个报错可能是什么原因?

"机器学习PAI这个报错可能是什么原因?



参考答案:

看着像fg里面引用的列,输入表没有



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/588636



问题四:机器学习PAI中swing 推荐报错,能给看一下为什么?

"机器学习PAI中swing 推荐报错,能给看一下为什么?



参考答案:

java.lang.classcastexception: java.lang.String cannot be cast to com.alibaba.alink.common.MTable,转换成bigint试试



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/588633



问题五:机器学习PAI在训练自定义模型时报了这个错,可以帮忙看下什么原因嘛?

机器学习PAI在训练自定义模型时报了这个错,可以帮忙看下什么原因嘛?https://logview.alibaba-inc.com/logview/?h=http://service.odps.aliyun-inc.com/api&p=ump_ads_dev&i=20240102081336426gdk6t2bvyg2_cd4c7da1_d527_4ef8_aa48_a528194bd0ed&token=SFdGUGp2N3NYeC9uejErQmo3M1BPQ2tTVnBjPSxPRFBTX09CTzoxODY2OTY1OTcxODQ2OTU4LDE3MDY3NzUyMjAseyJTdGF0ZW1lbnQiOlt7IkFjdGlvbiI6WyJvZHBzOlJlYWQiXSwiRWZmZWN0IjoiQWxsb3ciLCJSZXNvdXJjZSI6WyJhY3M6b2RwczoqOnByb2plY3RzL3VtcF9hZHNfZGV2L2luc3RhbmNlcy8yMDI0MDEwMjA4MTMzNjQyNmdkazZ0MmJ2eWcyX2NkNGM3ZGExX2Q1MjdfNGVmOF9hYTQ4X2E1MjgxOTRiZDBlZCJdfV0sIlZlcnNpb24iOiIxIn0=



参考答案:

打包方式不对,参考,https://easyrec.readthedocs.io/en/latest/release.html#pai-max-compute-easyrec 



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587870



问题六:PAI只有2.0的,按照教程中的最后一步生成照片时提示以下图片这个错误,怎么解决?

咨询一下,我的PAI只有2.0的,按照教程中的最后一步生成照片时提示以下图片这个错误,怎么解决?



参考答案:

显存不足。

不打开background restore,就可以生成了。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/587049

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
27 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
19天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
84 27
|
9天前
|
数据采集 人工智能 智能设计
首个!阿里云人工智能平台率先通过国际标准认证
首个!阿里云人工智能平台率先通过国际标准认证
50 7
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
23天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
150 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
2月前
|
机器学习/深度学习 PyTorch API
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
Transformer架构自2017年被Vaswani等人提出以来,凭借其核心的注意力机制,已成为AI领域的重大突破。该机制允许模型根据任务需求灵活聚焦于输入的不同部分,极大地增强了对复杂语言和结构的理解能力。起初主要应用于自然语言处理,Transformer迅速扩展至语音识别、计算机视觉等多领域,展现出强大的跨学科应用潜力。然而,随着模型规模的增长,注意力层的高计算复杂度成为发展瓶颈。为此,本文探讨了在PyTorch生态系统中优化注意力层的各种技术,
76 6
优化注意力层提升 Transformer 模型效率:通过改进注意力机制降低机器学习成本
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
49 12
|
1天前
|
存储 人工智能 大数据
AI开发新范式,PAI模型构建平台升级发布
本次分享由阿里云智能集团产品专家高慧玲主讲,聚焦AI开发新范式及PAI模型构建平台的升级。分享分为四个部分,围绕“人人可用”和“面向生产”两大核心理念展开。通过降低AI工程化门槛、提供一站式全链路服务,PAI平台致力于帮助企业和开发者更高效地实现AI应用。案例展示中,介绍了多模态模型微调在文旅场景的应用,展示了如何快速复现并利用AI解决实际问题。最终目标是让AI技术更普及,赋能各行业,推动社会进步。

相关产品

  • 人工智能平台 PAI