人工智能平台PAI使用问题之部署时是否可以自定义资源的区域

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:请教下机器学习PAI-eas部署,使用公共资源能自定义资源的区域吗,比如我想用北京?

请教下机器学习PAI-eas部署,使用公共资源能自定义资源的区域吗,比如我想用北京?



参考答案:

可以啊,左上角区域选择北京就行



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591623



问题二:想请教一下机器学习PAI,在编译gpu版本的deeprec碰到了一些问题,可以帮忙看看嘛?

https://github.com/DeepRec-AI/DeepRec/issues/966

想请教一下机器学习PAI,在编译gpu版本的deeprec碰到了一些问题,有群里的大佬可以帮忙看看嘛?



参考答案:

可以试试降级bazel的版本到 0.26.1 试试, GPU版本暂时不支持这个版本的bazel来编译



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591133



问题三:用max compute的资源,部署机器学习PAI环境,都可以仿照的方式了吗?

用max compute的资源,部署机器学习PAI环境,都可以仿照easy_rec_flow_ex的方式了?



参考答案:

可以仿照easy_rec_flow_ex的方式使用MaxCompute的资源部署机器学习PAI环境。

首先,您需要确保已经具备了使用MaxCompute的基础设施和相应的计算资源。MaxCompute是阿里云提供的一种大数据计算服务,它可以为您提供强大的数据处理能力,适合进行大规模的数据同步、处理、分析和机器学习模型的训练等任务。在机器学习平台PAI上,您可以利用MaxCompute的资源来完成一站式的机器学习流程,包括数据处理、模型训练和服务部署等环节。

其次,为了部署类似于easy_rec_flow_ex的环境,您可能需要登录到PAI控制台,并在其中创建或选择相应的工作空间。在这个工作空间内,您可以进行模型的开发和训练,使用内置的JupyterLab、WebIDE及Terminal等工具来满足不同的业务场景和客户需求。

此外,PAI平台内部封装了100多种机器学习算法,支持一键部署,这为机器学习开发提供了便利。如果您需要进行文本分类等特定类型的机器学习任务,PAI也提供了相应的算法组件,这些组件集成了基于BERT的文本分类模型等多种先进的算法。

最后,不要忘记在DataWorks数据工厂中进行机器学习任务的编排和管理,这是确保机器学习流程顺利进行的重要环节。

综上所述,通过MaxCompute的资源和PAI平台的强大功能,您可以按照easy_rec_flow_ex的流程进行机器学习环境的部署和开发。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591130



问题四:我看机器学习PAI deploy_ext这个打包时可以选择用deeprec,而不是默认的是不?

我看机器学习PAI deploy_ext这个打包时可以选择用deeprec,而不是默认的pai-tf1.12是不?



参考答案:

是的,这个只应影响自定义算子。因为算子的so是跟编译环境相关的,不用自定义算子就不用穿这个参数



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591129



问题五:可否介绍下机器学习PAI这几个文件的作用和流程啊?还是这个可选择deeprec啊?

可否介绍下机器学习PAI这几个文件的作用和流程啊?还是这个可选择deeprec啊?



参考答案:

deploy 文件的使用可以见文档:https://easyrec.readthedocs.io/en/latest/release.html

easy_rec_flow 那个是内部系统部署的时候用到的,这个地方你应该用不到 ,



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591128

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3天前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
1月前
|
机器学习/深度学习 人工智能 监控
揭秘人工智能:机器学习的魔法
【10月更文挑战第6天】本文将带你走进人工智能的世界,了解机器学习如何改变我们的生活。我们将深入探讨机器学习的原理,以及它在各个领域的应用。同时,我们也会分享一些实用的代码示例,帮助你更好地理解和应用机器学习。无论你是初学者还是专业人士,这篇文章都将为你提供有价值的信息和启示。让我们一起探索这个神奇的领域吧!
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
1月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
57 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习在医疗诊断中的应用
【9月更文挑战第32天】随着科技的不断发展,人工智能和机器学习已经在许多领域得到了广泛应用。在医疗领域,它们正在改变着医生和患者的生活。通过分析大量的医疗数据,AI可以帮助医生更准确地诊断疾病,预测患者的病情发展,并提供个性化的治疗方案。本文将探讨人工智能和机器学习在医疗诊断中的具体应用,包括图像识别、自然语言处理和预测分析等方面。我们还将讨论AI技术面临的挑战和未来的发展趋势。
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
18 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
17天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
54 1

相关产品

  • 人工智能平台 PAI