请教下机器学习PAI用easyrec组件化实现模型,加载下来用相同的样本输入多次,得到不同的输出,但是差距不大,是有什么随机过程吗?内置模型没发现相同问题,用组件化搭了一个模型出来,训练好了然后加载出来,用同一条样本去测试,多次打分的结果不一致,千分位万分位的差异,就是没法用一条样本复现相同的打分
您好!这种情况可能是由于EasyRec组件化模型中的随机过程导致的。在EasyRec的组件化模型中,使用了多个组件块组成的有向无环图(DAG),这个DAG的输出节点由concat_blocks配置项定义,各输出组件块的输出tensor拼接之后输入给一个可选的顶部MLP层,或者直接链接到最终的预测层。这其中可能包含一些随机初始化的过程,例如某些层的权重初始化或者Dropout等操作,这些都可能引入随机性。因此,当您用相同的样本去测试时,可能会得到略微不同的结果。
此外,如果您在训练过程中设置了随机种子,那么每次运行时得到的结果应该是相同的。但是如果没有设置随机种子,那么每次运行时得到的结果可能会有所不同。
是的,即使对于相同的输入样本,每次运行时模型输出的结果也可能不同,这是因为大多数机器学习模型都包含一些随机元素。具体来说,主要有以下两个原因:
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。
人工智能平台 PAI(Platform for AI,原机器学习平台PAI)是面向开发者和企业的机器学习/深度学习工程平台,提供包含数据标注、模型构建、模型训练、模型部署、推理优化在内的AI开发全链路服务,内置140+种优化算法,具备丰富的行业场景插件,为用户提供低门槛、高性能的云原生AI工程化能力。