人工智能平台PAI使用问题之如何配置学习任务

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:用机器学习PAI的easyrec训练产出的pb模型,在做离线预测时,可以帮忙看下是什么问题吗?

用机器学习PAI的easyrec训练产出的pb模型,在做离线预测时,发现在ODPS用PAI做预测,和本地脚本做预测产出的分数、表征不一致,可以帮忙看下是什么问题吗?

版本:PAI-TF 1.12 本地TF 1.12

输入:1:1 1:1 1:1 1:1 1:1(tagFeature)

ODPS PAI结果:0.017237,-1.630764,0.022628,-0.013977,-0.018369

本地脚本预测结果:-0.842036,1.162899,-0.013451,0.012557,-0.010401



参考答案:

感觉要么就是模型不一样(可能odps和本地用的不是一个savemodel),要么就是数据有差异,差异可能不是肉眼能观察到的,可以向着这两个方向在探索探索



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591126



问题二:机器学习PAI类似这样的格式,如何config直接配置?

机器学习PAI类似这样的格式,如何config直接配置,不用把seq_item_id和seq_item_feas1 再拆开呢?我看 feature-generate-mr 生成的序列特征格式是:

seq_item_id:seq_item_id1_val#seq_item_feas1:seq_item_feas1_vals11|seq_item_feas1_vals12;

seq_item_id:seq_item_id2_val#seq_item_feas1:seq_item_feas1_vals21|seq_item_feas1_vals22;



参考答案:

如果用fg,就在fg.json中对这个进行配置,但我建议你直接用个udf,把你需要的所有子特征放在一列种,用';'分割 ,



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591125



问题三:机器学习PAI用bladedisc测试一个unet模型,结果比trt慢将近4倍,请问还有调优空间吗?

机器学习PAI用bladedisc测试了一个unet模型,结果比trt慢将近4倍,请问还有调优空间吗?



参考答案:

是的,还有调优空间。以下是一些建议来优化机器学习PAI使用bladedisc测试的unet模型性能:

  1. 数据预处理:确保在输入模型之前对数据进行适当的预处理。这包括归一化、缩放、填充等操作,以便模型能够更好地理解和处理输入数据。
  2. 批量大小调整:尝试调整批量大小以找到最佳的性能平衡点。较小的批量大小可能会导致较低的内存占用,但可能会增加计算时间。较大的批量大小可能会提高计算效率,但可能会增加内存需求。
  3. 模型简化:考虑对模型进行简化,减少网络的深度或宽度。这可以减少计算复杂度和内存需求,从而提高性能。
  4. 并行计算:尝试使用多线程或分布式计算来加速模型的推理过程。通过将计算任务分配给多个处理器或节点,可以显著提高性能。
  5. 硬件优化:确保您的硬件配置适合运行该模型。选择具有足够计算能力和内存的处理器和显卡,以确保模型能够在合理的时间内完成推理。
  6. 软件优化:尝试使用优化工具和技术来提高模型的性能。例如,使用编译器优化选项、并行计算库或模型压缩技术等。
  7. 模型量化:考虑对模型进行量化,将浮点数转换为低精度表示形式。这可以减少内存需求并提高计算速度,但可能会降低模型的准确性。
  8. 缓存优化:尝试使用缓存技术来减少重复计算和数据传输的时间。例如,将常用的中间结果存储在缓存中,以避免重复计算。
  9. 代码优化:检查和优化您的代码,确保没有不必要的计算或冗余操作。使用高效的算法和数据结构来提高代码的性能。
  10. 实验和调优:进行实验和调优,尝试不同的参数组合和配置,以找到最佳的性能设置。使用性能分析工具来识别瓶颈和优化机会。

请注意,优化是一个迭代的过程,需要不断地尝试和调整,以找到最佳的性能平衡点。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/591122



问题四:机器学习PAI过滤与映射模块选择字段为啥会多个2这几列,是bug吗?

机器学习PAI过滤与映射模块选择字段为啥会多个2这几列,是你们的bug?



参考答案:

应该是跟decimal格式有关 ,选string类型的字段没问题



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589803



问题五:请问机器学习PAI这个服务内存占用没到上限96GB,内存占比却超过100%是为什么?

请问机器学习PAI这个服务内存占用没到上限96GB,内存占比却超过100%是为什么?



参考答案:

机器学习PAI服务内存占用没到上限96GB,但内存占比却超过100%的情况可能是由于一些特定的因素。例如,某些机器学习工具或库可能存在默认的内存设置,这可能会限制其使用的内存量。此外,数据加载器在迭代过程中的内存占用可能仅为每次迭代获取的批次数据的内存占用量。

在某些情况下,深度学习训练过程中的显存占用可能会包括框架占用、模型参数相关的占用以及特征相关的占用等部分。如果使用了优化器,梯度相关的参数占用也需要考虑在内。

对于这个问题,您可以尝试以下几种解决方案:首先,检查是否可以重新设置相关工具或库的内存分配,以分配更多的内存。其次,可以考虑使用更小的样本数据集。另外,提高Batch size或者采用多进程并发处理数据的方式也可能有助于减少内存占比。最后,根据具体的计算需求和硬件配置,合理调整模型和优化器等相关参数,以降低显存占用。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/589802

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
1月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
2月前
|
机器学习/深度学习 人工智能 监控
揭秘人工智能:机器学习的魔法
【10月更文挑战第6天】本文将带你走进人工智能的世界,了解机器学习如何改变我们的生活。我们将深入探讨机器学习的原理,以及它在各个领域的应用。同时,我们也会分享一些实用的代码示例,帮助你更好地理解和应用机器学习。无论你是初学者还是专业人士,这篇文章都将为你提供有价值的信息和启示。让我们一起探索这个神奇的领域吧!
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
2月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
5天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
58 27
|
23天前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
96 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
18天前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
36 12
|
22天前
|
机器学习/深度学习 自然语言处理
在模型训练中,如何平衡通用性和特定任务的需求
在模型训练中平衡通用性和特定任务需求是关键挑战。策略包括预训练与微调、多任务学习、结合任务无关与相关特征、选择适当架构、领域适应、数据增强、超参数调整、注意力机制、层级化训练、模型集成、利用中间表示、持续评估、避免过拟合、考虑伦理偏见、优化资源效率及收集用户反馈。这些方法有助于训练出既通用又专业的模型。
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
1月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
83 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型

相关产品

  • 人工智能平台 PAI
  • 下一篇
    DataWorks