Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置

简介: Anaconda+Cuda+Cudnn+Pytorch(GPU版)+Pycharm+Win11深度学习环境配置

一、准备工作

个人电脑配置:RTX4060 win11

个人配置版本:cuda(11.7)+ pytorch(2.0.1) + python(3.9)

所需工具:

1、python集成开发环境:Anaconda

2、CUDA、cuDNN:英伟达提供的针对英伟达显卡的运算平台。用来提升神经网络的运行效率,如果电脑显卡不满足要求也是可以不用安装,使用cpu来进行运算。

3、开发工具:PyCharm

4、深度学习库:PyTorch(也可以使用TensorFlow平台)

二、安装Anaconda

Anaconda官网:https://www.anaconda.com

点击下载Download即可。Anaconda的下载安装都很简单,网上教程很多。这里就不赘述了。

三、安装Cuda+Cudnn

跟着这个b站博主做的,讲的很通俗易懂,安装一次就成功了。

2022最新版CUDA安装+环境配置,人工智能小白变强教程!!!-人工智能/深度学习/机器学习

先查看自己电脑所支持的CUDA的最高版本是多少。

win+R 输入cmd 进入命令行,输入nvidia-smi,根据右上角的CUDA Version可以知道,该电脑适配12.0版本以下的CUDA。

注意: 安装cuda的版本时不要安装最新版本,很有可能会和之后安装的东西不适配。个人建议是如果和pytorch结合做项目,那么去pytorch官网查看一下目前的版本。个人选择的是CUDA11.7。

CUDA的版本也和Anaconda中下载的python版本有关(这里的python是下载anaconda时自带的,不需要另外去下载)。因为下载anaconda时是直接下载的,所以查看一下python的版本。

win+R 输入cmd 回车,然后输入conda activate激活anaconda环境,输入python -V查看版本

这里查到版本是3.9.0,但其实最开始下载完anaconda后查看版本是3.10,通过查看cuda和python版本的对应关系,发现目前cuda可以支持python的版本只有3.9之前,3.10是不支持的,所以这里需要修改anaconda环境中python的版本,修改为3.9版本。可以根据这个文章里的步骤去修改:https://blog.csdn.net/qq_56520755/article/details/130489115

按照上述的步骤,就可以把Anaconda、cuda和cudnn下载完成。

四、Pytorch(GPU版)

整体的安装环境过程,在这个地方用的时间最长。先列出几个不顺利的方法,再说明我的解决方法。

注意: 如果之后使用过程是在某个虚拟环境中进行时,那么一定要进入自己创建的虚拟环境之后再进行安装。

不顺利的方法:

1、直接在pytorch官网复制conda命令或者pip命令,然后进入Anoconda环境去下载,尝试了5-6次,都没有成功,失败原因是下载时间超过。(这里有个解决办法是可以去设置timeout的时间,但是我没有去尝试,有兴趣的如果碰到这个问题可以试试)

2、因为上一步显示下载时间过长的问题,所以就想到使用国内镜像源去下载,但是这里有个问题是,使用国内镜像源下载(清华镜像源或是其他)下载下来的都是适用于cpu版本,但是并不适用于GPU版本,结果就是卸载重新想办法安装。

成功的办法:离线安装

先在pytorch官网上找到自己CUDA版本对应的pytorch、torchvision应该安装的版本号。寻找网址

再去以下这个地址中去下载自己对应的xml文件: https://download.pytorch.org/whl/torch_stable.html

寻找对应xml文件的方法,网上可以搜到,我底下以自己为例举个例子。

我要下载的是torch11.7,所以我要找到对应 pytorch=2.0.0、torchvision=0.15.0的版本的文件。

conda install pytorch==2.0.0 torchvision==0.15.0 torchaudio==2.0.0 pytorch-cuda=11.7 -c pytorch -c nvidia

我要下载的torch离线包是这个,具体的下载原因是:

cu117其中这个117指的是cuda是11.7版本,torch代表的是torch包,2.0.0是对应我上面找到的torch版本,cp39代表的是python版本是3.9版本,win代表的是windows系统,64代表自己的电脑是64位。

下载的torchvision包是这个,具体的原因与上面相似,这里就不一一赘述。

下载到本地后,先进入Anaconda的环境(创建一个虚拟环境,然后再进入这个虚拟环境,具体的创建和进入的过程网上有很多教程),然后cd进入到自己下载的文件夹的位置,比如我是 cd E:\torch\torch2.0.1,再输入E:回车,再输入pip install 文件名称即可,两个文件都要pip install,记住先pip install torch文件,再pip install 另外一个。

注意: 在安装完成后,在pycharm里运行import torch时报错了,显示的问题是版本不对,所以我又重新下载了pycharm中提示的版本,所以以下例子中是2.0.1,而不是2.0.0。

对以上图片中命令行的解释如下:

首先第一步是进入自己创建的虚拟环境中(我自己创建的虚拟环境叫yolov7,这个是自己取的)

进入环境后进入下载文件的存放位置

再使用pip install 进行下载即可,记得文件要加上文件类型.xml

对于上图为什么之前说的是2.0.0版本,但是我下载的确实2.0.1版本的解释:

根据官网上找到的版本,发现是2.0.0版本,但是当我第一次pip install 完成后,在pycharm里运行import torch报错,根据报错原因里找到了我应该下载的是2.0.1版本,以及对应的torchversion版本是0.15.2,所以我就卸载了之前安装的2.0.0版本,重新安装了提示的版本。这里如何一下子找到正确的版本我没有进行探索,如果有兴趣的可以自己探索安装一下。

查看torch是否安装成功以及是否可以适用GPU:

进入Anaconda虚拟环境,然后输入python,输入import torch导入torch包,再输入torch.__version__查看torch的版本,再通过输入torch.cuda.is_available()结果是True可以判断适用于GPU,如果结果为False,则证明不适用于GPU。

五、安装pycharm

pycharm的安装过程网上教程很多,这里就不介绍了。主要介绍以下pycharm中环境的配置。

在pycharm中打开自己想要运行的文件夹,然后配置解释器。

找到python interpreter后,点击Add interpreter

进入之后点击existing,然后浏览文件找到对应的虚拟环境的python文件。通常虚拟环境保存在下载的anaconda文件夹下的envs文件夹下就可以找到自己创建的所有的虚拟环境,选择自己想要运行的虚拟环境,点击对应文件夹,选择python.exe文件即可。

通过以上的步骤就将解释器设置成功了,然后就可以运行自己的程序了,运行程序时可能会出现没有某个模块的情况,通过pip install下载对应模块即可。

解释器配置完成后,在pycharm中对torch的版本以及对GPU的适用性进行测试,成功则结束。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
PyTorch Linux 算法框架/工具
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
这篇文章是关于如何使用Anaconda进行Python环境管理,包括下载、安装、配置环境变量、创建多版本Python环境、安装PyTorch以及使用Jupyter Notebook的详细指南。
248 1
pytorch学习一:Anaconda下载、安装、配置环境变量。anaconda创建多版本python环境。安装 pytorch。
|
1月前
|
并行计算 PyTorch TensorFlow
Ubuntu安装笔记(一):安装显卡驱动、cuda/cudnn、Anaconda、Pytorch、Tensorflow、Opencv、Visdom、FFMPEG、卸载一些不必要的预装软件
这篇文章是关于如何在Ubuntu操作系统上安装显卡驱动、CUDA、CUDNN、Anaconda、PyTorch、TensorFlow、OpenCV、FFMPEG以及卸载不必要的预装软件的详细指南。
3270 3
|
1月前
|
并行计算 PyTorch 编译器
|
3月前
|
机器学习/深度学习 PyTorch TensorFlow
conda、anaconda、pip、pytorch、tensorflow有什么关联?
conda、anaconda、pip、pytorch、tensorflow有什么关联?
|
7天前
|
机器学习/深度学习 人工智能 测试技术
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术,尤其是卷积神经网络(CNN)在图像识别任务中的最新进展和面临的主要挑战。通过分析不同的网络架构、训练技巧以及优化策略,文章旨在提供一个全面的概览,帮助研究人员和实践者更好地理解和应用这些技术。
36 9
|
3天前
|
机器学习/深度学习 人工智能 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的工作原理及其在处理图像数据方面的优势。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率。同时,文章也讨论了当前面临的主要挑战,包括数据不足、过拟合问题以及计算资源的需求,并提出了相应的解决策略。
|
4天前
|
机器学习/深度学习 分布式计算 并行计算
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的卷积神经网络(CNN)架构,并讨论了在实际应用中遇到的挑战和可能的解决方案。通过对比研究,揭示了不同网络结构对识别准确率的影响,并提出了优化策略。此外,文章还探讨了深度学习模型在处理大规模数据集时的性能瓶颈,以及如何通过硬件加速和算法改进来提升效率。
|
4天前
|
机器学习/深度学习 人工智能 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第38天】本文将深入探讨深度学习如何在图像识别领域大放异彩,并揭示其背后的技术细节和面临的挑战。我们将通过实际案例,了解深度学习如何改变图像处理的方式,以及它在实际应用中遇到的困难和限制。
|
4天前
|
机器学习/深度学习 传感器 自动驾驶
深度学习在自动驾驶中的应用与挑战####
本文探讨了深度学习技术在自动驾驶领域的应用现状、面临的主要挑战及未来发展趋势。通过分析卷积神经网络(CNN)和循环神经网络(RNN)等关键算法在环境感知、决策规划中的作用,结合特斯拉Autopilot和Waymo的实际案例,揭示了深度学习如何推动自动驾驶技术向更高层次发展。文章还讨论了数据质量、模型泛化能力、安全性及伦理道德等问题,为行业研究者和开发者提供了宝贵的参考。 ####
|
6天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。