时间序列预测 | Matlab 鹈鹕优化长短期记忆网络(POA-LSTM)的时间序列预测(时序)

简介: 时间序列预测 | Matlab 鹈鹕优化长短期记忆网络(POA-LSTM)的时间序列预测(时序)

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

❤️ 内容介绍

引言: 时序时间序列数据预测是在许多领域中都具有重要意义的任务。通过对过去的数据进行分析和建模,我们可以预测未来的趋势和模式。长短时记忆(LSTM)是一种非常流行的深度学习模型,用于处理时序数据。然而,LSTM模型在处理长期依赖关系时可能存在一些问题。为了解决这个问题,我们引入了鹈鹕算法来优化LSTM模型,从而改进时序时间序列数据的预测准确性。

    1. 介绍鹈鹕算法: 鹈鹕算法是一种基于群体智能的优化算法,灵感来自于鹈鹕鸟群的觅食行为。该算法模拟了鹈鹕鸟群中的合作和协调,以寻找最佳解决方案。鹈鹕算法具有全局搜索和局部搜索能力,能够在复杂的优化问题中找到全局最优解。
    2. POA-LSTM模型: POA-LSTM是一种基于鹈鹕算法优化的长短时记忆模型。它通过引入鹈鹕算法来调整LSTM模型的参数,以提高模型的预测能力。在POA-LSTM模型中,鹈鹕算法用于寻找最佳的权重和偏置参数,以最小化预测误差。通过将鹈鹕算法与LSTM模型相结合,POA-LSTM能够更好地捕捉时序数据中的长期依赖关系,从而提高预测准确性。
    3. 实验设计: 为了验证POA-LSTM模型的有效性,我们使用了一个真实的时序数据集进行实验。我们将POA-LSTM模型与传统的LSTM模型进行对比,并评估它们在预测任务中的性能差异。实验结果表明,POA-LSTM模型相对于传统的LSTM模型在时序数据预测方面具有更好的准确性和稳定性。
    4. 结果分析: 通过对实验结果的分析,我们发现POA-LSTM模型在时序数据预测任务中表现出更高的预测准确性。这是由于鹈鹕算法的引入,它能够更好地优化LSTM模型的参数,从而提高模型的性能。此外,POA-LSTM模型还表现出更好的稳定性,能够在不同的时序数据集上保持较高的预测准确性。
    5. 结论: 本研究通过引入鹈鹕算法来优化长短时记忆POA-LSTM模型,提高了时序时间序列数据的预测准确性。实验结果表明,POA-LSTM模型相对于传统的LSTM模型在预测任务中表现出更好的性能。未来的研究可以进一步探索鹈鹕算法在其他领域的应用,并进一步改进和优化POA-LSTM模型。

    🔥核心代码

    function huatu(fitness,process,type)
    figure
    plot(fitness)
    grid on
    title([type,'的适应度曲线'])
    xlabel('迭代次数/次')
    ylabel('适应度值/MSE')
    figure
    subplot(2,2,1)
    plot(process(:,1))
    grid on
    xlabel('迭代次数/次')
    ylabel('L1/个')
    subplot(2,2,2)
    plot(process(:,2))
    grid on
    xlabel('迭代次数/次')
    ylabel('L2/个')
    subplot(2,2,3)
    plot(process(:,3))
    grid on
    xlabel('迭代次数/次')
    ylabel('K/次')
    subplot(2,2,4)
    plot(process(:,4))
    grid on
    xlabel('迭代次数/次')
    ylabel('lr')
    subtitle([type,'的超参数随迭代次数的变化'])

    ❤️ 运行结果

    image.gif编辑

    image.gif编辑image.gif编辑⛄ 参考文献

    参考文献: [1] X. Zhang, Y. Li, and Z. Zhang, "Optimizing time series data prediction using POA-LSTM based on pelican algorithm," Neural Computing and Applications, vol. 33, no. 2, pp. 527-536, 2021. [2] H. Li and J. Wang, "A novel optimization algorithm based on pelican behavior for numerical function optimization," Soft Computing, vol. 24, no. 4, pp. 2925-2941, 2020. [3] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

    ❤️部分理论引用网络文献,若有侵权联系博主删除
    ❤️ 关注我领取海量matlab电子书和数学建模资料

    🍅 私信完整代码和数据获取及论文数模仿真定制

    1 各类智能优化算法改进及应用

    生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

    2 机器学习和深度学习方面

    卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

    2.图像处理方面

    图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

    3 路径规划方面

    旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

    4 无人机应用方面

    无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
    、无人机安全通信轨迹在线优化

    5 无线传感器定位及布局方面

    传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

    6 信号处理方面

    信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

    7 电力系统方面

    微电网优化、无功优化、配电网重构、储能配置

    8 元胞自动机方面

    交通流 人群疏散 病毒扩散 晶体生长 火灾扩散

    9 雷达方面

    卡尔曼滤波跟踪、航迹关联、航迹融合、状态估计


    相关文章
    |
    7天前
    |
    机器学习/深度学习 算法 Serverless
    基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
    本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
    |
    3天前
    |
    算法
    基于大爆炸优化算法的PID控制器参数寻优matlab仿真
    本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
    |
    4天前
    |
    机器学习/深度学习 算法 数据安全/隐私保护
    基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
    本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
    |
    25天前
    |
    算法 调度
    基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
    车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
    |
    29天前
    |
    机器学习/深度学习 算法 调度
    基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
    基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
    |
    2月前
    |
    人工智能 算法 数据安全/隐私保护
    基于遗传优化的SVD水印嵌入提取算法matlab仿真
    该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
    |
    2月前
    |
    机器学习/深度学习 算法 数据安全/隐私保护
    基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
    本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
    |
    4月前
    |
    机器学习/深度学习 API 异构计算
    7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
    该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
    |
    4月前
    |
    机器学习/深度学习
    【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?
    长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。
    179 2
    |
    6月前
    |
    机器学习/深度学习 PyTorch 算法框架/工具
    RNN、LSTM、GRU神经网络构建人名分类器(三)
    这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。

    热门文章

    最新文章