RNN、LSTM、GRU神经网络构建人名分类器(一)

简介: 这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。

RNN、LSTM、GRU神经网络构建人名分类器


案例介绍


关于人名分类问题:


以一个人名为输入, 使用模型帮助我们判断它最有可能是来自哪一个国家的人名, 这在某些国际化公司的业务中具有重要意义, 在用户注册过程中, 会根据用户填写的名字直接给他分配可能的国家或地区选项, 以及该国家或地区的国旗, 限制手机号码位数等等。


数据下载地址: https://download.pytorch.org/tutorial/data.zip


数据文件预览:


- data/
    - names/
        Arabic.txt
        Chinese.txt
        Czech.txt
        Dutch.txt
        English.txt
        French.txt
        German.txt
        Greek.txt
        Irish.txt
        Italian.txt
        Japanese.txt
        Korean.txt
        Polish.txt
        Portuguese.txt
        Russian.txt
        Scottish.txt
        Spanish.txt
        Vietnamese.txt


如Chiness.txt:


Ang
Au-Yong
Bai
Ban
Bao
Bei
Bian
Bui
Cai
Cao
Cen
Chai
Chaim
Chan
Chang
Chao
Che
Chen
Cheng


整个案例的实现可分为以下五个步骤


  • 导入必备的工具包
  • 对data文件中的数据进行处理,满足训练要求
  • 构建RNN模型(包括传统RNN, LSTM以及GRU).
  • 构建训练函数并进行训练
  • 构建评估函数并进行预测


导入必备的工具包


# 从io中导入文件打开方法
from io import open
# 帮助使用正则表达式进行子目录的查询
import glob
import os
# 用于获得常见字母及字符规范化
import string
import unicodedata
import random
import time
import math
import torch
import torch.nn as nn      
import matplotlib.pyplot as plt

数据预处理


需要对data文件中的数据进行处理,满足训练要求


1 获取常用的字符数量


# 获取所有常用字符包括字母和常用标点
all_letters = string.ascii_letters + " .,;'"
# 获取常用字符数量
n_letters = len(all_letters)
print("n_letter:", n_letters)


  • 输出: n_letter: 57


2 字符规范化之unicode转ascii函数


# 完成此功能如: Ślusàrski ---> Slusarski
def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
        and c in all_letters
    )


3 构建一个从文件中读取内容到内存的函数


data_path = "./data/names/"

def readLines(filename):
    """从文件中读取每一行加载到内存中形成列表"""
    # 打开指定文件读取内容, strip()去除两侧空白符,以'\n'进行切分
    lines = open(filename, encoding='utf-8').read().strip().split('\n')
    # 对应每一个lines列表中的名字进行Ascii转换, 使其规范化.最后返回一个名字列表
    return [unicodeToAscii(line) for line in lines]


调用测试一下:


# filename是数据集中某个具体的文件, 我们这里选择Chinese.txt
filename = data_path + "Chinese.txt"
lines = readLines(filename)
print(lines)


输出


lines: ['Ang', 'AuYong', 'Bai', 'Ban', 'Bao', 'Bei', 'Bian', 'Bui', 'Cai', 'Cao', 'Cen', 'Chai', 'Chaim', 'Chan', 'Chang', 'Chao', 'Che', 'Chen', 'Cheng', 'Cheung', 'Chew', 'Chieu', 'Chin', 'Chong', 'Chou', 'Chu', 'Cui', 'Dai', 'Deng', 'Ding', 'Dong', 'Dou', 'Duan', 'Eng', 'Fan', 'Fei', 'Feng', 'Foong', 'Fung', 'Gan', 'Gauk', 'Geng', 'Gim', 'Gok', 'Gong', 'Guan', 'Guang', 'Guo', 'Gwock', 'Han', 'Hang', 'Hao', 'Hew', 'Hiu', 'Hong', 'Hor', 'Hsiao', 'Hua', 'Huan', 'Huang', 'Hui', 'Huie', 'Huo', 'Jia', 'Jiang', 'Jin', 'Jing', 'Joe', 'Kang', 'Kau', 'Khoo', 'Khu', 'Kong', 'Koo', 'Kwan', 'Kwei', 'Kwong', 'Lai', 'Lam', 'Lang', 'Lau', 'Law', 'Lew', 'Lian', 'Liao', 'Lim', 'Lin', 'Ling', 'Liu', 'Loh', 'Long', 'Loong', 'Luo', 'Mah', 'Mai', 'Mak', 'Mao', 'Mar', 'Mei', 'Meng', 'Miao', 'Min', 'Ming', 'Moy', 'Mui', 'Nie', 'Niu', 'OuYang', 'OwYang', 'Pan', 'Pang', 'Pei', 'Peng', 'Ping', 'Qian', 'Qin', 'Qiu', 'Quan', 'Que', 'Ran', 'Rao', 'Rong', 'Ruan', 'Sam', 'Seah', 'See ', 'Seow', 'Seto', 'Sha', 'Shan', 'Shang', 'Shao', 'Shaw', 'She', 'Shen', 'Sheng', 'Shi', 'Shu', 'Shuai', 'Shui', 'Shum', 'Siew', 'Siu', 'Song', 'Sum', 'Sun', 'Sze ', 'Tan', 'Tang', 'Tao', 'Teng', 'Teoh', 'Thean', 'Thian', 'Thien', 'Tian', 'Tong', 'Tow', 'Tsang', 'Tse', 'Tsen', 'Tso', 'Tze', 'Wan', 'Wang', 'Wei', 'Wen', 'Weng', 'Won', 'Wong', 'Woo', 'Xiang', 'Xiao', 'Xie', 'Xing', 'Xue', 'Xun', 'Yan', 'Yang', 'Yao', 'Yap', 'Yau', 'Yee', 'Yep', 'Yim', 'Yin', 'Ying', 'Yong', 'You', 'Yuan', 'Zang', 'Zeng', 'Zha', 'Zhan', 'Zhang', 'Zhao', 'Zhen', 'Zheng', 'Zhong', 'Zhou', 'Zhu', 'Zhuo', 'Zong', 'Zou', 'Bing', 'Chi', 'Chu', 'Cong', 'Cuan', 'Dan', 'Fei', 'Feng', 'Gai', 'Gao', 'Gou', 'Guan', 'Gui', 'Guo', 'Hong', 'Hou', 'Huan', 'Jian', 'Jiao', 'Jin', 'Jiu', 'Juan', 'Jue', 'Kan', 'Kuai', 'Kuang', 'Kui', 'Lao', 'Liang', 'Lu', 'Luo', 'Man', 'Nao', 'Pian', 'Qiao', 'Qing', 'Qiu', 'Rang', 'Rui', 'She', 'Shi', 'Shuo', 'Sui', 'Tai', 'Wan', 'Wei', 'Xian', 'Xie', 'Xin', 'Xing', 'Xiong', 'Xuan', 'Yan', 'Yin', 'Ying', 'Yuan', 'Yue', 'Yun', 'Zha', 'Zhai', 'Zhang', 'Zhi', 'Zhuan', 'Zhui']
4 构建人名类别(所属的语言)列表与人名对应关系字典


# 构建的category_lines形如:{"English":["Lily", "Susan", "Kobe"], "Chinese":["Zhang San", "Xiao Ming"]}
category_lines = {}

# all_categories形如: ["English",...,"Chinese"]
all_categories = []

# 读取指定路径下的txt文件, 使用glob,path中可以使用正则表达式
for filename in glob.glob(data_path + '*.txt'):
    # 获取每个文件的文件名, 就是对应的名字类别
    category = os.path.splitext(os.path.basename(filename))[0]
    # 将其逐一装到all_categories列表中
    all_categories.append(category)
    # 然后读取每个文件的内容,形成名字列表
    lines = readLines(filename)
    # 按照对应的类别,将名字列表写入到category_lines字典中
    category_lines[category] = lines


# 查看类别总数
n_categories = len(all_categories)
print("n_categories:", n_categories)

# 随便查看其中的一些内容
print(category_lines['Italian'][:5])


输出:


n_categories: 18
['Abandonato', 'Abatangelo', 'Abatantuono', 'Abate', 'Abategiovanni']


5 将人名转化为对应onehot张量表示


def lineToTensor(line):
    """将人名转化为对应onehot张量表示, 参数line是输入的人名"""
    # 首先初始化一个0张量, 它的形状(len(line), 1, n_letters) 
    # 代表人名中的每个字母用一个1 x n_letters的张量表示.
    tensor = torch.zeros(len(line), 1, n_letters)
    # 遍历这个人名中的每个字符索引和字符
    for li, letter in enumerate(line):
        # 使用字符串方法find找到每个字符在all_letters中的索引
        # 它也是我们生成onehot张量中1的索引位置
        tensor[li][0][all_letters.find(letter)] = 1
    # 返回结果
    return tensor


 onehot编码举例:


猫(cat): [1, 0, 0]
狗(dog): [0, 1, 0] (表示“狗”的向量)
鸟(bird): [0, 0, 1]


到现在先测试一下,然后再继续运行:


line = "Bai"
line_tensor = lineToTensor(line)
print("line_tensot:", line_tensor)


line_tensot: tensor([[[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]],

        [[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
          0., 0., 0., 0., 0., 0.]]])



RNN、LSTM、GRU神经网络构建人名分类器(二)+https://developer.aliyun.com/article/1544721?spm=a2c6h.13148508.setting.17.2a1e4f0eMtMqGK

相关文章
|
14天前
|
边缘计算 安全 算法
阿里云CDN:构建全球化智能加速网络的数字高速公路
阿里云CDN构建全球化智能加速网络,拥有2800多个边缘节点覆盖67个国家,实现毫秒级网络延迟。其三级节点拓扑结构与智能路由系统,结合流量预测模型,确保高命中率。全栈式加速技术包括QUIC协议优化和Brotli压缩算法,保障安全与性能。五层防御机制有效抵御攻击,行业解决方案涵盖视频、物联网及游戏等领域,支持新兴AR/VR与元宇宙需求,持续推动数字内容分发技术边界。
55 13
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
|
28天前
|
安全 自动驾驶 物联网
新四化驱动,如何构建智能汽车的“全场景”可进化互联网络?
在智能化、电动化、网联化、共享化的时代浪潮中,汽车正从单纯的 “机械产品” 进化为先进的 “移动智能终端”。在软件定义汽车(SDV)的崭新时代,每一次 OTA 升级的顺利完成、每一秒自动驾驶的精准决策、每一帧车载娱乐交互的流畅呈现,都离不开一张实时响应、全域覆盖、安全可靠的广域网络。
|
1月前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
1月前
|
人工智能 运维 API
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
|
2月前
|
云安全 人工智能 安全
构建云上安全共同体 | 阿里云亮相2024年(第十三届)电信和互联网行业网络安全年会
构建云上安全共同体 | 阿里云亮相2024年(第十三届)电信和互联网行业网络安全年会
|
2月前
|
云安全 人工智能 安全
阿里云网络安全体系解析:如何构建数字时代的"安全盾牌"
在数字经济时代,阿里云作为亚太地区最大的云服务提供商,构建了行业领先的网络安全体系。本文解析其网络安全架构的三大核心维度:基础架构安全、核心技术防护和安全管理体系。通过技术创新与体系化防御,阿里云为企业数字化转型提供坚实的安全屏障,确保数据安全与业务连续性。案例显示,某金融客户借助阿里云成功拦截3200万次攻击,降低运维成本40%,响应时间缩短至8分钟。未来,阿里云将继续推进自适应安全架构,助力企业提升核心竞争力。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
110 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
2月前
|
Shell 网络架构 计算机视觉
RT-DETR改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
RT-DETR改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
59 5
|
2月前
|
Shell 网络架构 计算机视觉
YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络
132 14

热门文章

最新文章