基于WOA优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

简介: 该文介绍了使用优化后的深度学习模型(基于CNN、LSTM和Attention机制)进行时间序列预测,对比了优化前后的效果,显示了性能提升。算法在MATLAB2022a中实现,利用WOA(鲸鱼优化算法)调整模型超参数。模型通过CNN提取局部特征,LSTM处理序列依赖,Attention机制关注相关历史信息。核心程序展示了WOA如何迭代优化及预测过程,包括数据归一化、网络结构分析和预测误差可视化。

1.算法运行效果图预览
优化前:

image.png
image.png

优化后:

image.png
image.png

2.算法运行软件版本
matlab2022a

3.算法理论概述
时间序列回归预测是数据分析的重要领域,旨在根据历史数据预测未来时刻的数值。近年来,深度学习模型如卷积神经网络(Convolutional Neural Network, CNN)、长短时记忆网络(Long Short-Term Memory, LSTM)以及注意力机制(Attention Mechanism)在时间序列预测中展现出显著优势。然而,模型参数的有效设置对预测性能至关重要。鲸鱼优化(WOA)作为一种高效的全局优化算法,被引入用于优化深度学习模型的超参数。

3.1卷积神经网络(CNN)在时间序列中的应用
在时间序列数据中,CNN用于提取局部特征和模式。对于一个长度为T的时间序列数据X = [x_1, x_2, ..., x_T],通过卷积层可以生成一组特征映射:

image.png

   CNN通过多个卷积层和池化层的堆叠来提取输入数据的特征。每个卷积层都包含多个卷积核,用于捕捉不同的特征。池化层则用于降低数据的维度,减少计算量并增强模型的鲁棒性。

3.2 长短时记忆网络(LSTM)处理序列依赖关系
LSTM单元能够有效捕捉时间序列中的长期依赖关系。在一个时间步t,LSTM的内部状态h_t和隐藏状态c_t更新如下:

image.png

   长短时记忆网络是一种特殊的循环神经网络(RNN),设计用于解决长序列依赖问题。在时间序列预测中,LSTM能够有效地捕捉时间序列中的长期依赖关系。

3.3 注意力机制(Attention)
注意力机制是一种让模型能够自动地关注输入数据中重要部分的技术。在时间序列预测中,注意力机制可以帮助模型关注与当前预测最相关的历史信息。

   CNN-LSTM-Attention模型结合了CNN、LSTM和Attention三种技术的优势。首先,使用CNN提取时间序列中的局部特征;然后,将提取的特征输入到LSTM中,捕捉时间序列中的长期依赖关系;最后,通过注意力机制对LSTM的输出进行加权,使模型能够关注与当前预测最相关的历史信息。具体来说,模型的流程如下:

image.png

3.4 WOA优化算法
WOA即Whale Optimization Algorithm(鲸鱼优化算法),是一种受自然界鲸鱼捕食行为启发的生物启发式优化算法,由Eslam Mohamed于2016年提出,常用于解决各种连续优化问题,包括函数优化、机器学习参数调整、工程设计等领域中的复杂优化任务。鲸鱼优化算法模拟了虎鲸的两种主要觅食策略: Bubble-net attacking 和 Spiral updating 过程。

4.部分核心程序
```for t=1:Iters
%调整参数
c1 = 2-t((1)/300);
c2 =-1+t
((-1)/300);
%位置更新
for i=1:Num
r1 = rand();
r2 = rand();
K1 = 2c1r1-c1;
K2 = 2r2;
l =(c2-1)
rand + 1;
rand_flag = rand();

    for j=1:D
        if rand_flag<0.5   
           if abs(K1)>=1
              RLidx    = floor(Num*rand()+1);
              X_rand   = xwoa(RLidx, :);
              D_X_rand = abs(K2*X_rand(j)-xwoa(i,j)); 
              xwoa(i,j)= X_rand(j)-K1*D_X_rand;     
           else
              D_Leader = abs(K2*woa_idx(j)-xwoa(i,j)); 
              xwoa(i,j)= woa_idx(j)-K1*D_Leader;    
           end
        else
            distLeader = abs(woa_idx(j)-xwoa(i,j));
            xwoa(i,j)  = distLeader*exp(2*l).*cos(l.*2*pi)+woa_idx(j);
        end
        %目标函数更新
        if xwoa(i,j)>=tmps(j,2) 
           xwoa(i,j)=tmps(j,2);
        end
        if xwoa(i,j)<=tmps(j,1) 
           xwoa(i,j)=tmps(j,1);
        end
    end
    gb12(i)= func_obj(xwoa(i,:));
end

end

numHiddenUnits = floor(woa_idx(1))+1
LR = woa_idx(2)

%数据预测
Dpre1 = predict(Net, Nsp_train2);
Dpre2 = predict(Net, Nsp_test2);

%归一化还原
T_sim1=Dpre1Vmax2;
T_sim2=Dpre2
Vmax2;

%网络结构
analyzeNetwork(Net)

figure
subplot(211);
plot(1: Num1, Tat_train,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num1, T_sim1,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);

legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
grid on

subplot(212);
plot(1: Num1, Tat_train-T_sim1','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);
figure
subplot(211);
plot(1: Num2, Tat_test,'-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);
hold on
plot(1: Num2, T_sim2,'g',...
'LineWidth',2,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
legend('真实值', '预测值')
xlabel('测试样本')
ylabel('测试结果')
grid on
subplot(212);
plot(1: Num2, Tat_test-T_sim2','-bs',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.0,0.0]);

xlabel('预测样本')
ylabel('预测误差')
grid on
ylim([-50,50]);

save R2.mat Num2 Tat_test T_sim2 gb1

```

相关文章
|
6天前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
6天前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为&quot;Ttttttt111222&quot;,优化后为&quot;Tttttttt333444&quot;,明显改进体现为&quot;Tttttttttt5555&quot;。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用&#39;adam&#39;优化器和超参数调整,最终评估并保存预测结果。
15 0
|
9天前
|
机器学习/深度学习 算法
基于GA遗传优化的CNN-GRU的时间序列回归预测matlab仿真
摘要: 使用MATLAB2022a,展示了一种基于遗传算法优化的CNN-GRU时间序列预测模型,融合遗传算法与深度学习,提升预测精度。遗传算法负责优化模型超参数,如学习率和神经元数量,以最小化均方误差。CNN负责特征提取,GRU处理序列数据中的长期依赖。流程包括初始化、评估、选择、交叉、变异和迭代,旨在找到最佳超参数组合。
|
1月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
1月前
|
机器学习/深度学习 算法 算法框架/工具
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
数据分享|PYTHON用KERAS的LSTM神经网络进行时间序列预测天然气价格例子
|
5天前
|
机器学习/深度学习 自然语言处理 前端开发
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
深度学习-[源码+数据集]基于LSTM神经网络黄金价格预测实战
|
6天前
|
机器学习/深度学习 存储 自然语言处理
RNN与LSTM:循环神经网络的深入理解
【6月更文挑战第14天】本文深入探讨RNN和LSTM,两种关键的深度学习模型在处理序列数据时的作用。RNN利用记忆单元捕捉时间依赖性,但面临梯度消失和爆炸问题。为解决此问题,LSTM引入门控机制,有效捕获长期依赖,适用于长序列处理。RNN与LSTM相互关联,LSTM可视为RNN的优化版本。两者在NLP、语音识别等领域有广泛影响,未来潜力无限。
|
6天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
|
19天前
|
机器学习/深度学习 存储 算法
基于CNN+LSTM深度学习网络的时间序列预测matlab仿真,并对比CNN+GRU网络
该文介绍了使用MATLAB2022A进行时间序列预测的算法,结合CNN和RNN(LSTM或GRU)处理数据。CNN提取局部特征,RNN处理序列依赖。LSTM通过门控机制擅长长序列,GRU则更为简洁、高效。程序展示了训练损失、精度随epoch变化的曲线,并对训练及测试数据进行预测,评估预测误差。
|
1月前
|
机器学习/深度学习 数据挖掘 PyTorch
使用Python实现长短时记忆网络(LSTM)的博客教程
使用Python实现长短时记忆网络(LSTM)的博客教程
30 0

热门文章

最新文章