Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码

简介: Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码

随着大数据时代的来临,深度学习技术在各个领域中得到了广泛的应用。长短期记忆(LSTM)网络作为深度学习领域中的一种重要模型,因其对序列数据的强大处理能力,在自然语言处理、时间序列预测等领域中取得了显著的成果点击文末“阅读原文”获取完整代码数据

相关视频

image.png

然而,LSTM模型的性能在很大程度上取决于其超参数的设置。因此,如何有效地帮助客户对LSTM模型的超参数进行调优,以获取最佳性能,成为了当前研究的热点之一。

传统的超参数调优方法,如网格搜索、随机搜索等,虽然在一定程度上能够找到较优的超参数组合,但往往存在计算量大、搜索效率低等问题。遗传算法(Genetic Algorithm, GA)作为一种模拟生物进化过程的优化算法,通过选择、交叉、变异等操作,能够在全局范围内搜索最优解,因此在超参数调优领域具有广阔的应用前景。

本文旨在研究基于Python遗传算法的LSTM深度学习模型超参数调优方法,并将其应用于司机数据分析中。首先,我们将介绍遗传算法的基本原理及其在超参数调优中的应用;然后,我们将详细阐述基于Python的遗传算法实现过程,包括染色体编码、适应度函数设计、遗传操作等;接着,我们将利用司机数据构建LSTM模型,并使用遗传算法对模型的超参数进行调优;最后,我们将对优化前后的模型性能进行对比分析,以验证本文所提方法的有效性。

通过本研究,我们期望能够为LSTM深度学习模型的超参数调优提供一种高效、准确的方法,并为司机数据的分析和预测提供有力的技术支持。同时,我们也希望能够为相关领域的研究人员提供一定的参考和借鉴。

!pip install deap
!pip install bitstring
dataset = pd.read_csv("


7f4170edf81a9573397d257aad991998.png

在此步骤中,我们使用了最小-最大缩放器(min_max_scaler)对数据集进行了标准化处理。标准化是机器学习中常见的预处理步骤,旨在将特征缩放到相同的尺度上,以便模型能够更好地学习数据的内在结构。通过标准化,我们可以确保每个特征的值都落在相同的范围内(通常是0到1之间),这有助于模型收敛并减少过拟合的风险。

x_train_scaled = min_max_scaler.fit_transform(data)

54de5aef6d97fafaa8be060c6de18cab.png


array array_y=Y.to_numpy()

在此步骤中,我们将输出标签Y从pandas DataFrame转换为NumPy数组。NumPy是Python中用于处理大型多维数组和矩阵的数学库,它提供了大量的数学函数来操作这些数组。将DataFrame转换为NumPy数组可以提高计算效率,并使得后续的数据处理和模型训练更加方便。


dc4149a3cd6b5c1d366df7d46c6afdac.png

我们定义了train_valuae函数,该函数负责将遗传算法(GA)的解码方案转换为整数形式的超参数,并基于这些超参数定义和训练LSTM网络模型。遗传算法是一种启发式搜索算法,它通过模拟自然选择和遗传学原理来寻找问题的最优解。在这里,我们将每个可能的LSTM模型配置编码为一个染色体(即GA的个体),并使用遗传算法来搜索最优的超参数组合。

函数首先解码GA的解,将其转换为整数形式的超参数,如LSTM层中的神经元数量、训练轮数(epochs)和批次大小(batch_size)。然后,基于这些解码后的超参数,我们定义了LSTM模型的架构。接下来,使用指定的超参数训练LSTM模型,并在训练完成后评估模型的性能。最后,函数返回模型的适应度得分,这里我们使用准确率(acc)作为性能指标,而不是均方根误差(RMSE),以符合修改要求。

# 将参数添加到染色体中,并定义LSTM网络模型
import math
def train_auate(ga_indvidul_soltion):   
# 将遗传算法的解码为整数,以获取num_neurons1、epochs和batch_size  
num_neurons1_bits = BtArry(gaindividul_solution[0:9])
    num_neurons2_bits =

399311bf44144c5fe3c90a368acd5147.png


bf4c75930222e12888c4f49056842dc2.png

7ffd20bb2b132d87569fdb93ca77b638.png

df52295615bf0bf42238be479bbadd71.png


已经成功地从遗传算法中选择了最佳个体(即包含最优超参数配置的染色体)。接下来,您需要使用这些最佳超参数来训练LSTM模型,并评估其性能。由于您希望将评估指标从均方根误差(RMSE)更改为准确率(accuracy),我们需要对模型训练和评估的部分进行相应调整。

首先,我们需要根据bes_indiduals中的最佳超参数配置来定义LSTM模型。然后,我们将使用Adam优化器(其学习率等参数已根据遗传算法的结果设置)来训练模型。最后,我们将使用准确率作为评估指标来评估模型的性能。

best_individuals = tools.selBest(population,k = 1)


04c5b6407f6699599c41b094ba15a2de.png

 #使用从遗传算法获得的最佳个体训练模型  
optimizer=optimizs.Aam(lr=0.006685, beta_1=0.9, beta_2=0.

#rmse = historyhisory['rmse']
#minrmse = min(rmse)    
#print('RMSE:',minrmse)

创建了一个Adam优化器的实例,并将其赋值给变量optimizer。Adam是一种常用的优化算法,用于深度学习模型的参数更新。这里设置了Adam优化器的三个主要参数:

  • lr=0.0056595:学习率(learning rate),它决定了模型参数在每次更新时的步长大小。
  • beta_1=0.9:一阶矩估计的指数衰减率。
  • beta_2=0.:二阶矩估计的指数衰减率。这里设置为0可能是一个错误,通常beta_2的值会接近于1(如0.999)。

ae6c188cd9c28f5227241709d029faaa.png

52297fa26027ea2e6ae15bf0a25b3248.png 我们打印出了模型的训练集和测试集的准确率,通过print函数将训练集准确率(train_acc)和测试集准确率(test_acc)以四位小数的形式输出,便于观察和分析。

print('Train: %.4f, Test: %.4f' % (train_acc, test_acc))


e02d0cd1b1dc31b53fefc881b3a57b22.png

我们绘制了模型的准确率曲线图,通过plt.plot函数将训练集和测试集的准确率绘制在同一张图上,并使用plt.legend函数添加图例以区分两者。从图中可以清晰地看出模型在训练集和测试集上的性能表现,以及随着训练的进行,准确率的变化情况。

plt.legend(['train', 'test'], loc='upper left') plt.title("Accuracy") plt.show()

b39fa02a06eecbf08541a3a5930da3e1.png

我们还对模型的损失函数进行了可视化。通过提取history.history['loss']中的数据,我们绘制了损失函数的变化曲线。该曲线反映了模型在训练过程中损失值的下降趋势,有助于我们了解模型的收敛情况。

plt.plot(histoy.hitory['loss'])

a6af97acf124c290dcf045ce6ea990ca.png


为了进一步评估模型的性能,我们还计算了微平均ROC曲线和ROC面积。通过调用roc_curveauc函数,我们得到了微平均ROC曲线的假正率(fpr["micro"])和真正率(tpr["micro"]),以及相应的ROC面积(roc_auc["micro"])。这些指标能够全面反映模型在不同类别上的分类性能,为模型的优化提供了重要的参考依据。

fpr["micro"], tpr["micro"], _ = roc_cure(y_test.rvel(), y_pred.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

dfe45fc412c1a5cf497f6c33495b9a23.png

最后,我们绘制了ROC曲线图,并通过plt.legendplt.show函数对图例和图形进行了显示。从图中可以看出,模型的ROC曲线较为接近左上角,表明模型具有较好的分类性能。同时,通过计算得到的ROC面积也进一步验证了模型的优良性能。

plt.legend(loc="lower right") plt.show()

59dd144153a716848f500a3848e83d24.png

版本信息:

!python -c 'import tensorflow; print(tensorflow.__version__)'



8b965e35ac224274887df7b9bbfa9c96.png

相关文章
|
2天前
|
JSON JavaScript 数据格式
利用 python 分析基金,合理分析数据让赚钱赢在起跑线!(1)
利用 python 分析基金,合理分析数据让赚钱赢在起跑线!(1)
|
2天前
|
机器学习/深度学习 数据采集 自然语言处理
python函数参数的传递、带星号参数的传递,2024年大厂Python高级面试题分享
python函数参数的传递、带星号参数的传递,2024年大厂Python高级面试题分享
|
3天前
|
存储 JSON 数据格式
Python知识点——高维数据的格式化
Python知识点——高维数据的格式化
5 0
|
3天前
|
Python
Python知识点——文件和数据格式化
Python知识点——文件和数据格式化
6 0
|
4天前
|
存储 机器学习/深度学习 数据可视化
基于Python的数据分组技术:将数据按照1, 2, 3规则分为三个列表
基于Python的数据分组技术:将数据按照1, 2, 3规则分为三个列表
8 1
|
4天前
|
算法 编译器 开发者
如何提高Python代码的性能:优化技巧与实践
本文探讨了如何提高Python代码的性能,重点介绍了一些优化技巧与实践方法。通过使用适当的数据结构、算法和编程范式,以及利用Python内置的性能优化工具,可以有效地提升Python程序的执行效率,从而提升整体应用性能。本文将针对不同场景和需求,分享一些实用的优化技巧,并通过示例代码和性能测试结果加以说明。
|
4天前
|
人工智能 Python
Python中的反对称矩阵:理论、应用与代码实践
Python中的反对称矩阵:理论、应用与代码实践
26 1
|
4天前
|
存储 算法 搜索推荐
如何提升Python代码的性能:优化技巧与实践
本文将介绍如何通过优化技巧和实践方法来提升Python代码的性能。从避免不必要的循环和函数调用,到利用内置函数和库,再到使用适当的数据结构和算法,我们将深入探讨各种提升Python代码性能的方法,帮助开发者写出更高效的程序。
|
4天前
|
设计模式 缓存 数据安全/隐私保护
使用装饰器优化 Python 代码的技巧与实践
使用装饰器优化 Python 代码的技巧与实践
66 0
|
开发工具 git Python
Git:Python代码开发到服务器上测试实践
Git:Python代码开发到服务器上测试实践
139 0