【机器学习】面试题:LSTM长短期记忆网络的理解?LSTM是怎么解决梯度消失的问题的?还有哪些其它的解决梯度消失或梯度爆炸的方法?

简介: 长短时记忆网络(LSTM)的基本概念、解决梯度消失问题的机制,以及介绍了包括梯度裁剪、改变激活函数、残差结构和Batch Normalization在内的其他方法来解决梯度消失或梯度爆炸问题。

(1)简单介绍一下LSTM

因为循环神经网络(Recurrent Neural Networks,RNN),本质是一个全连接网络,在处理长期依赖的问题上会出现梯度消失和梯度爆炸。长短时记忆模块(Long Short Term Memory,LSTM),是对RNN存在的梯度消失、梯度爆炸问题的一种优化模型。通过增加输入门限,遗忘门限和输出门限,使得自循环的权重是变化的,这样一来在模型参数固定的情况下,不同时刻的积分尺度可以动态改变,从而避免了梯度消失或者梯度膨胀的问题。

LSTM的三个门的作用:输入门决定何时让输入进入细胞单元;遗忘门决定何时应该记住前一时刻的信息;输出门决定何时让记忆流入下一时刻。

LSTM包含了两种激活函数,sigmoid 用在了各种门限上,产生0~1之间的值。tanh 用在了状态和输出上,是对数据的处理,这个用其他激活函数或许也可以。

(2)LSTM是怎么解决梯度消失的问题的?

传统的神经网络层数一多,就会有梯度消逝和爆炸的现象,因为导数的链式法则导致了连乘的形式。造成梯度指数级的消失,lstm使用CEC(constant error carousel)机制,使得远处的梯度传到近处没有改变、但这样又会造成输入输出权重矛盾,所以又使用了门限单元来解决。

(3)还有哪些其它的解决梯度消失或梯度爆炸的方法?

  • 梯度裁剪gradient clipping,当BP时的梯度小于某个阈值或大于某个阈值时 ,直接裁剪,防止太小的梯度累乘带来的梯度消失或太大的梯度累乘带来的梯度爆炸。
  • 改变激活函数,例如减少使用sigmoid、tanh这类激活函数,改成使用Relu、LeakRelu等。
  • 残差结构,类似于CEC的模块,跨层的连接结构能让梯度无损的进行后向传播。
  • Batch Normalization,相当于对每一层的输入做了一个规范化,强行把这个输入拉回标准正态分布*N~(0,1)。*这样使得激活输入值落在非线性函数对输入比较敏感的区域,这样输入的小变化就会导致损失函数的大变化,进而梯度变大,避免产生梯度消失问题。而且梯度变化大意味着学习收敛速度快,加快模型的训练速度。
目录
相关文章
|
26天前
|
机器学习/深度学习 PyTorch TensorFlow
【机器学习】基于tensorflow实现你的第一个DNN网络
【机器学习】基于tensorflow实现你的第一个DNN网络
44 0
|
8天前
|
机器学习/深度学习 安全 算法
利用机器学习优化网络安全防御策略
【8月更文挑战第30天】在信息技术迅猛发展的今天,网络安全问题日益突显,传统的安全防御手段逐渐显得力不从心。本文提出一种基于机器学习的网络安全防御策略优化方法。首先,通过分析现有网络攻击模式和特征,构建适用于网络安全的机器学习模型;然后,利用该模型对网络流量进行实时监控和异常检测,从而有效识别潜在的安全威胁;最后,根据检测结果自动调整防御策略,以提升整体网络的安全性能。本研究的创新点在于将机器学习技术与网络安全防御相结合,实现了智能化、自动化的安全防御体系。
|
22天前
|
机器学习/深度学习 自然语言处理 自动驾驶
【机器学习】神经网络的无限可能:从基础到前沿
在当今人工智能的浪潮中,神经网络作为其核心驱动力之一,正以前所未有的速度改变着我们的世界。从图像识别到自然语言处理,从自动驾驶到医疗诊断,神经网络的应用无处不在。本文旨在深入探讨神经网络的各个方面,从基础概念到最新进展,带领读者一窥其背后的奥秘与魅力。
37 3
|
1月前
|
机器学习/深度学习 算法 数据中心
【机器学习】面试问答:PCA算法介绍?PCA算法过程?PCA为什么要中心化处理?PCA为什么要做正交变化?PCA与线性判别分析LDA降维的区别?
本文介绍了主成分分析(PCA)算法,包括PCA的基本概念、算法过程、中心化处理的必要性、正交变换的目的,以及PCA与线性判别分析(LDA)在降维上的区别。
38 4
|
1月前
|
机器学习/深度学习 算法 Python
【机器学习】面试问答:决策树如何进行剪枝?剪枝的方法有哪些?
文章讨论了决策树的剪枝技术,包括预剪枝和后剪枝的概念、方法以及各自的优缺点。
39 2
|
1月前
|
机器学习/深度学习 算法
【机器学习】SVM面试题:简单介绍一下SVM?支持向量机SVM、逻辑回归LR、决策树DT的直观对比和理论对比,该如何选择?SVM为什么采用间隔最大化?为什么要将求解SVM的原始问题转换为其对偶问题?
支持向量机(SVM)的介绍,包括其基本概念、与逻辑回归(LR)和决策树(DT)的直观和理论对比,如何选择这些算法,SVM为何采用间隔最大化,求解SVM时为何转换为对偶问题,核函数的引入原因,以及SVM对缺失数据的敏感性。
45 3
|
26天前
|
人工智能 物联网 异构计算
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
AI智能体研发之路-模型篇(一):大模型训练框架LLaMA-Factory在国内网络环境下的安装、部署及使用
80 0
|
10天前
|
机器学习/深度学习 算法 数据挖掘
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
8个常见的机器学习算法的计算复杂度总结
|
2天前
|
机器学习/深度学习 数据采集 算法
数据挖掘和机器学习算法
数据挖掘和机器学习算法
|
5天前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
64 1
下一篇
DDNS