m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真

简介: 在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。

1.算法仿真效果
matlab2022a仿真结果如下:

优化前:

1.jpeg
2.jpeg

优化后:

3.jpeg
4.jpeg
5.jpeg

2.算法涉及理论知识概要
基于粒子群优化(Particle Swarm Optimization, PSO)和长短时记忆网络(Long Short-Term Memory, LSTM)的电力负荷预测算法,是一种将全局优化策略与深度学习模型相结合的先进预测方法。该方法旨在通过优化LSTM网络的超参数,提高模型在电力负荷预测任务中的准确性和稳定性,进而有效应对电力系统中的负荷波动预测难题。

   PSO是一种基于群体智能的优化技术,灵感来源于鸟群觅食行为。它通过一群称为“粒子”的实体在解空间中搜索最优解,每个粒子代表一个潜在的解决方案,并通过不断更新自己的位置和速度来逼近全局最优解。

98408c08d16089eda241d1d9d7e6cdd5_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   LSTM是递归神经网络(RNN)的一种特殊类型,设计用于解决长期依赖问题。它通过独特的门机制(输入门、遗忘门、输出门和细胞状态)来控制信息的流入、存储和流出,从而有效地学习长期序列模式。

    结合PSO和LSTM,首先定义LSTM模型的超参数集合(如学习率、隐藏层单元数、层数等)作为粒子的位置向量。通过PSO算法迭代优化这些超参数,以最小化预测误差为目标函数,找到最优的LSTM模型配置。

3.MATLAB核心程序

figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');




X     = round(g1);


numFeatures    = 2;
numResponses   = 1;
numHiddenUnits = round(X);% 定义隐藏层中LSTM单元的数量
layers = [ ...% 定义网络层结构
    sequenceInputLayer(numFeatures) 
    lstmLayer(numHiddenUnits)
    dropoutLayer(0.1) 
    lstmLayer(2*numHiddenUnits)
    dropoutLayer(0.1)
    fullyConnectedLayer(numResponses)
    regressionLayer
    ];

% 设置训练选项
options = trainingOptions('adam', ...
    'MaxEpochs',200, ...
    'GradientThreshold',1, ...
    'InitialLearnRate',0.01, ...
    'LearnRateSchedule','piecewise', ...
    'LearnRateDropPeriod',125, ...
    'LearnRateDropFactor',0.1, ...
    'Verbose',0, ...
    'Plots','training-progress');
net  = trainNetwork(P,T,layers,options);


ypred = predict(net,[P],'MiniBatchSize',1);


figure;
subplot(211);
plot(T)
hold on
plot(ypred)
xlabel('days');
ylabel('负荷');
legend('实际负荷','LSTM预测负荷');
subplot(212);
plot(T-ypred)
xlabel('days');
ylabel('LSTM误差');



save R2.mat T ypred
0X_060m
相关文章
|
22天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
84 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
23天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
22天前
|
存储 监控 算法
局域网网络管控里 Node.js 红黑树算法的绝妙运用
在数字化办公中,局域网网络管控至关重要。红黑树作为一种自平衡二叉搜索树,凭借其高效的数据管理和平衡机制,在局域网设备状态管理中大放异彩。通过Node.js实现红黑树算法,可快速插入、查找和更新设备信息(如IP地址、带宽等),确保网络管理员实时监控和优化网络资源,提升局域网的稳定性和安全性。未来,随着技术融合,红黑树将在网络管控中持续进化,助力构建高效、安全的局域网络生态。
43 9
|
28天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
25天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
263 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
156 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
128 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章