Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

简介: Python电力负荷:ARIMA、LSTM神经网络时间序列预测分析

全文链接:http://tecdat.cn/?p=32059

分析师:Eileen


电力系统源源不断向各用户提供持续稳定的电能,本文通过对数据的提取,帮助客户分别对不同客户端日,月,年的用电负荷情况进行分析,并通过模型对单户负荷情况进行预测点击文末“阅读原文”获取完整数据


解决方案


任务/目标

本课题的数据分析对象是电力在2011-2014年的370个客户端的耗电数据,根据预测负荷可以安排发电厂发电机组的启停,降低储备容量的浪费,节约成本。

 

数据源准备


负荷预测是用历史负荷建立模型来预测未来负荷的方法,因此历史数据收集的数量、质量直接决定了负荷预测的准确性。所以在负荷预测前,需要收集大量的历史负荷数据、天气数据等。这些数据由于一些因素可能会造成数据的缺失,需要利用一些方法去填补缺失值,提高负荷预测的精确度。

本项目采用均值填补法,找到所有有缺失值的列,用各列的均值填充缺失值。


数据分析


通过曲线类图像,以特定时间周期所统计的负荷值为纵坐标来画出负荷/时间的关系曲线,呈现负荷的大小及发展趋势。例如年、月、季、天等指标。

 

划分训练集和测试集

对样本集拆分成训练集和测试集

values = reframed.values
n_train_time = 365*24*3
train = values[:n_train_time, :]
test = values[n_train_time:, :]

考虑到最终模型会预测将来的某时间段的销量,为了更真实的测试模型效果,以时间来切分训练集和测试集。具体做法如下:假设我们有2011-2014的客户端耗电数据。以2011 ~ 2013的数据作为训练,以2013 ~ 2014的数据作为测试。


建模


LSTM 模型, 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征,将问题转化为监督学习问题。将特征进行规范化、归一化,进而搭建网络模型、训练网络。

ARIMA 一般应用在股票和电商销量领域

该模型用于使用观察值和滞后观察值的移动平均模型残差间的依赖关系,采用了拟合ARIMA(5,1,0)模型,将自回归的滞后值设为5,使用1的差分阶数使时间序列平稳,使用0的移动平均模型。

在此案例中,运用2种方法预测电力负荷,其可视化图形如下:


ARIMA模型


点击标题查阅往期内容


Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据


01

02

03

04


LSTM模型


可以看出,预测值的趋势已经基本与真实趋势保持一致,但是在预测期较长的区间段,其预测值之间的差别较大。


关于分析师


在此对Eileen对本文所作的贡献表示诚挚感谢,她专注数据处理、数据分析、数据预测领域。擅长Python、数据分析。


相关文章
|
26天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
165 80
|
4月前
|
机器学习/深度学习 数据采集 算法
时间序列结构变化分析:Python实现时间序列变化点检测
在时间序列分析和预测中,准确检测结构变化至关重要。新出现的分布模式往往会导致历史数据失去代表性,进而影响基于这些数据训练的模型的有效性。
381 1
|
20天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
5月前
|
机器学习/深度学习 算法 数据挖掘
6种有效的时间序列数据特征工程技术(使用Python)
在本文中,我们将探讨使用日期时间列提取有用信息的各种特征工程技术。
204 1
|
1月前
|
机器学习/深度学习 算法 Python
基于BP神经网络的金融序列预测matlab仿真
本项目基于BP神经网络实现金融序列预测,使用MATLAB2022A版本进行开发与测试。通过构建多层前馈神经网络模型,利用历史金融数据训练模型,实现对未来金融时间序列如股票价格、汇率等的预测,并展示了预测误差及训练曲线。
|
5月前
|
机器学习/深度学习 API 异构计算
7.1.3.2、使用飞桨实现基于LSTM的情感分析模型的网络定义
该文章详细介绍了如何使用飞桨框架实现基于LSTM的情感分析模型,包括网络定义、模型训练、评估和预测的完整流程,并提供了相应的代码实现。
|
4月前
|
机器学习/深度学习 索引 Python
python之序列
python之序列
160 59
|
3月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
3月前
|
存储 编译器 索引
Python 序列类型(2)
【10月更文挑战第8天】
Python 序列类型(2)
|
3月前
|
存储 C++ 索引
Python 序列类型(1)
【10月更文挑战第8天】