融合黄金正弦和随机游走的哈里斯鹰优化算法(GSHHO)-附matlab代码

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 融合黄金正弦和随机游走的哈里斯鹰优化算法(GSHHO)-附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

针对哈里斯鹰优化算法收敛精度低,易陷入局部最优的问题,本文提出了融合黄金正弦和随机游走的哈里斯鹰优化算法.首先,该算法在哈里斯鹰的探索阶段融合黄金正弦优化算法,增强算法的全局探索能力;其次,使用一种非线性能量指数递减策略,平衡算法的全局探索和局部开发能力;然后,在哈里斯鹰的开发阶段引入高斯随机游走策略对猎物进行随机游走,提升算法的局部开发能力;最后,在23个测试函数上进行实验,评估改进后的哈里斯鹰优化算法的寻优性能.实验结果表明,所提算法具有更好的寻优速度和寻优精度.

GSHHO(融合黄金正弦和随机游走的哈里斯鹰优化算法)是一种基于黄金正弦和随机游走的优化算法。它结合了这两种方法的优点,旨在提高优化问题的求解效率和精度。

黄金正弦是一种基于黄金比例(1.618)的算法,它模拟了黄金分割的规律。通过使用正弦函数来生成候选解,可以在搜索空间中尽可能地覆盖更多的区域,从而增加找到全局最优解的概率。

随机游走是一种基于随机性的搜索方法,通过在搜索空间中随机移动来寻找解空间中的最优解。它可以避免陷入局部最优解,并帮助算法跳出局部极值点。

GSHHO算法将黄金正弦和随机游走相结合,通过不断迭代生成新的候选解,并根据一定的策略进行选择和更新。算法会根据目标函数的值来评估候选解的好坏,并根据一定的概率选择是否接受新的解。通过不断迭代优化,GSHHO算法可以找到较好的近似最优解。

需要注意的是,GSHHO算法的具体实现可能会因应用场景和问题而有所差异。该算法的效果和性能也需要根据具体情况进行评估和调整。

⛄ 部分代码

% Developed in MATLAB R2013b% Source codes demo version 1.0% _____________________________________________________% Main paper:% Harris hawks optimization: Algorithm and applications% Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, Huiling Chen% Future Generation Computer Systems, % DOI: https://doi.org/10.1016/j.future.2019.02.028% https://www.sciencedirect.com/science/article/pii/S0167739X18313530% _____________________________________________________% You can run the HHO code online at codeocean.com  https://doi.org/10.24433/CO.1455672.v1% You can find the HHO code at https://github.com/aliasghar68/Harris-hawks-optimization-Algorithm-and-applications-.git% _____________________________________________________%  Author, inventor and programmer: Ali Asghar Heidari,%  PhD research intern, Department of Computer Science, School of Computing, National University of Singapore, Singapore%  Exceptionally Talented Ph. DC funded by Iran's National Elites Foundation (INEF), University of Tehran%  03-03-2019%  Researchgate: https://www.researchgate.net/profile/Ali_Asghar_Heidari%  e-Mail: as_heidari@ut.ac.ir, aliasghar68@gmail.com,%  e-Mail (Singapore): aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu% _____________________________________________________%  Co-author and Advisor: Seyedali Mirjalili%%         e-Mail: ali.mirjalili@gmail.com%                 seyedali.mirjalili@griffithuni.edu.au%%       Homepage: http://www.alimirjalili.com% _____________________________________________________%  Co-authors: Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, and Hui-Ling Chen%       Homepage: http://www.evo-ml.com/2019/03/02/hho/% _____________________________________________________%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Harris's hawk optimizer: In this algorithm, Harris' hawks try to catch the rabbit.% T: maximum iterations, N: populatoin size, CNVG: Convergence curve% To run HHO: [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)function [Rabbit_Energy,Rabbit_Location,CNVG]=HHO(N,T,lb,ub,dim,fobj)% initialize the location and Energy of the rabbitRabbit_Location=zeros(1,dim);Rabbit_Energy=inf;%Initialize the locations of Harris' hawksX=initialization(N,dim,ub,lb);CNVG=zeros(1,T);t=0; % Loop counterwhile t<T    for i=1:size(X,1)        % Check boundries        FU=X(i,:)>ub;FL=X(i,:)<lb;X(i,:)=(X(i,:).*(~(FU+FL)))+ub.*FU+lb.*FL;        % fitness of locations        fitness=fobj(X(i,:));        % Update the location of Rabbit        if fitness<Rabbit_Energy            Rabbit_Energy=fitness;            Rabbit_Location=X(i,:);        end    end        E1=2*(1-(t/T)); % factor to show the decreaing energy of rabbit    % Update the location of Harris' hawks    for i=1:size(X,1)        E0=2*rand()-1; %-1<E0<1        Escaping_Energy=E1*(E0);  % escaping energy of rabbit                if abs(Escaping_Energy)>=1            %% Exploration:            % Harris' hawks perch randomly based on 2 strategy:                        q=rand();            rand_Hawk_index = floor(N*rand()+1);            X_rand = X(rand_Hawk_index, :);            if q<0.5                % perch based on other family members                X(i,:)=X_rand-rand()*abs(X_rand-2*rand()*X(i,:));            elseif q>=0.5                % perch on a random tall tree (random site inside group's home range)                X(i,:)=(Rabbit_Location(1,:)-mean(X))-rand()*((ub-lb)*rand+lb);            end                    elseif abs(Escaping_Energy)<1            %% Exploitation:            % Attacking the rabbit using 4 strategies regarding the behavior of the rabbit                        %% phase 1: surprise pounce (seven kills)            % surprise pounce (seven kills): multiple, short rapid dives by different hawks                        r=rand(); % probablity of each event                        if r>=0.5 && abs(Escaping_Energy)<0.5 % Hard besiege                X(i,:)=(Rabbit_Location)-Escaping_Energy*abs(Rabbit_Location-X(i,:));            end                        if r>=0.5 && abs(Escaping_Energy)>=0.5  % Soft besiege                Jump_strength=2*(1-rand()); % random jump strength of the rabbit                X(i,:)=(Rabbit_Location-X(i,:))-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));            end                        %% phase 2: performing team rapid dives (leapfrog movements)            if r<0.5 && abs(Escaping_Energy)>=0.5, % Soft besiege % rabbit try to escape by many zigzag deceptive motions                                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % hawks perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-X(i,:))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end                        if r<0.5 && abs(Escaping_Energy)<0.5, % Hard besiege % rabbit try to escape by many zigzag deceptive motions                % hawks try to decrease their average location with the rabbit                Jump_strength=2*(1-rand());                X1=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X));                                if fobj(X1)<fobj(X(i,:)) % improved move?                    X(i,:)=X1;                else % Perform levy-based short rapid dives around the rabbit                    X2=Rabbit_Location-Escaping_Energy*abs(Jump_strength*Rabbit_Location-mean(X))+rand(1,dim).*Levy(dim);                    if (fobj(X2)<fobj(X(i,:))), % improved move?                        X(i,:)=X2;                    end                end            end            %%        end    end    t=t+1;    CNVG(t)=Rabbit_Energy;%    Print the progress every 100 iterations%    if mod(t,100)==0%        display(['At iteration ', num2str(t), ' the best fitness is ', num2str(Rabbit_Energy)]);%    endendend% ___________________________________function o=Levy(d)beta=1.5;sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);u=randn(1,d)*sigma;v=randn(1,d);step=u./abs(v).^(1/beta);o=step;end

⛄ 运行结果

⛄ 参考文献

[1]聂春芳.融合黄金正弦和随机游走的哈里斯鹰优化算法[J].智能计算机与应用, 2021.DOI:10.3969/j.issn.2095-2163.2021.07.021.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料

🍅 仿真咨询

1 各类智能优化算法改进及应用

生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化

2 机器学习和深度学习方面

卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断

2.图像处理方面

图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知

3 路径规划方面

旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化

4 无人机应用方面

无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配

5 无线传感器定位及布局方面

传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化

6 信号处理方面

信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化

7 电力系统方面

微电网优化、无功优化、配电网重构、储能配置

8 元胞自动机方面

交通流 人群疏散 病毒扩散 晶体生长

9 雷达方面

卡尔曼滤波跟踪、航迹关联、航迹融合
相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
1天前
|
算法 安全 机器人
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
|
1天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
4天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
2天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
4天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
32 15
|
3天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
149 68

热门文章

最新文章